Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers;
import lombok.*;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.RNNFormat;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.params.EmbeddingLayerParamInitializer;
import org.deeplearning4j.nn.weights.IWeightInit;
import org.deeplearning4j.nn.weights.embeddings.ArrayEmbeddingInitializer;
import org.deeplearning4j.nn.weights.embeddings.EmbeddingInitializer;
import org.deeplearning4j.nn.weights.embeddings.WeightInitEmbedding;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.nd4j.linalg.activations.impl.ActivationIdentity;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Collection;
import java.util.Map;
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public class EmbeddingSequenceLayer extends FeedForwardLayer {
private int inputLength = 1; // By default only use one index to embed
private boolean hasBias = false;
private boolean inferInputLength = false; // use input length as provided by input data
private RNNFormat outputFormat = RNNFormat.NCW; //Default value for older deserialized models
private EmbeddingSequenceLayer(Builder builder) {
super(builder);
this.hasBias = builder.hasBias;
this.inputLength = builder.inputLength;
this.inferInputLength = builder.inferInputLength;
this.outputFormat = builder.outputFormat;
initializeConstraints(builder);
}
@Override
public Layer instantiate(NeuralNetConfiguration conf, Collection trainingListeners,
int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) {
org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingSequenceLayer ret =
new org.deeplearning4j.nn.layers.feedforward.embedding.EmbeddingSequenceLayer(conf, networkDataType);
ret.setListeners(trainingListeners);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
if (inputType == null || (inputType.getType() != InputType.Type.FF && inputType.getType() != InputType.Type.RNN)) {
throw new IllegalStateException("Invalid input for Embedding layer (layer index = " + layerIndex
+ ", layer name = \"" + getLayerName() + "\"): expect FF/RNN input type. Got: " + inputType);
}
return InputType.recurrent(nOut, inputLength, outputFormat);
}
@Override
public ParamInitializer initializer() {
return EmbeddingLayerParamInitializer.getInstance();
}
@Override
public LayerMemoryReport getMemoryReport(InputType inputType) {
InputType outputType = getOutputType(-1, inputType);
val actElementsPerEx = outputType.arrayElementsPerExample();
val numParams = initializer().numParams(this);
val updaterStateSize = (int) getIUpdater().stateSize(numParams);
return new LayerMemoryReport.Builder(layerName, EmbeddingSequenceLayer.class, inputType, outputType)
.standardMemory(numParams, updaterStateSize).workingMemory(0, 0, 0, actElementsPerEx)
.cacheMemory(MemoryReport.CACHE_MODE_ALL_ZEROS, MemoryReport.CACHE_MODE_ALL_ZEROS) //No caching
.build();
}
public boolean hasBias() {
return hasBias;
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
if (inputType == null) {
throw new IllegalStateException(
"Invalid input for layer (layer name = \"" + getLayerName() + "\"): input type is null");
}
if(inputType.getType() == InputType.Type.RNN){
return null;
}
return super.getPreProcessorForInputType(inputType);
}
@Override
public void setNIn(InputType inputType, boolean override) {
if(inputType.getType() == InputType.Type.RNN){
if (nIn <= 0 || override) {
InputType.InputTypeRecurrent f = (InputType.InputTypeRecurrent) inputType;
this.nIn = f.getSize();
}
} else if(inputType.getType() == InputType.Type.FF) {
if(nIn <= 0 || override) {
InputType.InputTypeFeedForward feedForward = (InputType.InputTypeFeedForward) inputType;
this.nIn = feedForward.getSize();
this.inferInputLength = true;
}
} else {
super.setNIn(inputType, override);
}
}
@Getter
@Setter
public static class Builder extends FeedForwardLayer.Builder {
public Builder(){
//Default to Identity activation - i.e., don't inherit.
//For example, if user sets ReLU as global default, they very likely don't intend to use it for Embedding layer also
this.activationFn = new ActivationIdentity();
}
/**
* If true: include bias parameters in the layer. False (default): no bias.
*
*/
private boolean hasBias = false;
/**
* Set input sequence length for this embedding layer.
*
*/
private int inputLength = 1;
/**
* Set input sequence inference mode for embedding layer.
*
*/
private boolean inferInputLength = true;
private RNNFormat outputFormat = RNNFormat.NCW; //Default value for older deserialized models
public Builder outputDataFormat(RNNFormat format){
this.outputFormat = format;
return this;
}
/**
* If true: include bias parameters in the layer. False (default): no bias.
*
* @param hasBias If true: include bias parameters in this layer
*/
public Builder hasBias(boolean hasBias) {
this.setHasBias(hasBias);
return this;
}
/**
* Set input sequence length for this embedding layer.
*
* @param inputLength input sequence length
* @return Builder
*/
public Builder inputLength(int inputLength) {
this.setInputLength(inputLength);
return this;
}
/**
* Set input sequence inference mode for embedding layer.
*
* @param inferInputLength whether to infer input length
* @return Builder
*/
public Builder inferInputLength(boolean inferInputLength) {
this.setInferInputLength(inferInputLength);
return this;
}
@Override
public Builder weightInit(IWeightInit weightInit) {
this.setWeightInitFn(weightInit);
return this;
}
@Override
public void setWeightInitFn(IWeightInit weightInit){
if(weightInit instanceof WeightInitEmbedding){
long[] shape = ((WeightInitEmbedding) weightInit).shape();
nIn(shape[0]);
nOut(shape[1]);
}
this.weightInitFn = weightInit;
}
/**
* Initialize the embedding layer using the specified EmbeddingInitializer - such as a Word2Vec instance
*
* @param embeddingInitializer Source of the embedding layer weights
*/
public Builder weightInit(EmbeddingInitializer embeddingInitializer){
return weightInit(new WeightInitEmbedding(embeddingInitializer));
}
/**
* Initialize the embedding layer using values from the specified array. Note that the array should have shape
* [vocabSize, vectorSize]. After copying values from the array to initialize the network parameters, the input
* array will be discarded (so that, if necessary, it can be garbage collected)
*
* @param vectors Vectors to initialize the embedding layer with
*/
public Builder weightInit(INDArray vectors){
return weightInit(new ArrayEmbeddingInitializer(vectors));
}
@Override
@SuppressWarnings("unchecked")
public EmbeddingSequenceLayer build() {
return new EmbeddingSequenceLayer(this);
}
}
}