org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers;
import lombok.*;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.api.layers.LayerConstraint;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.layers.recurrent.LSTMHelpers;
import org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.activations.impl.ActivationSigmoid;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.*;
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
@Deprecated
public class GravesBidirectionalLSTM extends BaseRecurrentLayer {
private double forgetGateBiasInit;
private IActivation gateActivationFn = new ActivationSigmoid();
protected boolean helperAllowFallback = true;
private GravesBidirectionalLSTM(Builder builder) {
super(builder);
this.forgetGateBiasInit = builder.forgetGateBiasInit;
this.gateActivationFn = builder.gateActivationFn;
this.helperAllowFallback = builder.helperAllowFallback;
initializeConstraints(builder);
}
@Override
protected void initializeConstraints(org.deeplearning4j.nn.conf.layers.Layer.Builder> builder) {
super.initializeConstraints(builder);
if (((Builder) builder).recurrentConstraints != null) {
if (constraints == null) {
constraints = new ArrayList<>();
}
for (LayerConstraint c : ((Builder) builder).recurrentConstraints) {
LayerConstraint c2 = c.clone();
Set s = new HashSet<>();
s.add(GravesBidirectionalLSTMParamInitializer.RECURRENT_WEIGHT_KEY_FORWARDS);
s.add(GravesBidirectionalLSTMParamInitializer.RECURRENT_WEIGHT_KEY_BACKWARDS);
c2.setParams(s);
constraints.add(c2);
}
}
}
@Override
public Layer instantiate(NeuralNetConfiguration conf, Collection trainingListeners,
int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) {
org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM ret =
new org.deeplearning4j.nn.layers.recurrent.GravesBidirectionalLSTM(conf, networkDataType);
ret.setListeners(trainingListeners);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public ParamInitializer initializer() {
return GravesBidirectionalLSTMParamInitializer.getInstance();
}
@Override
public LayerMemoryReport getMemoryReport(InputType inputType) {
return LSTMHelpers.getMemoryReport(this, inputType);
}
@AllArgsConstructor
@NoArgsConstructor
@Getter
@Setter
public static class Builder extends BaseRecurrentLayer.Builder {
/**
* Set forget gate bias initalizations. Values in range 1-5 can potentially help with learning or longer-term
* dependencies.
*/
private double forgetGateBiasInit = 1.0;
/**
* Activation function for the LSTM gates. Note: This should be bounded to range 0-1: sigmoid or hard sigmoid,
* for example
*
*/
private IActivation gateActivationFn = new ActivationSigmoid();
/**
* When using CuDNN and an error is encountered, should fallback to the non-CuDNN implementatation be allowed?
* If set to false, an exception in CuDNN will be propagated back to the user. If false, the built-in
* (non-CuDNN) implementation for GravesBidirectionalLSTM will be used
*
*/
protected boolean helperAllowFallback = true;
/**
* Set forget gate bias initalizations. Values in range 1-5 can potentially help with learning or longer-term
* dependencies.
*/
public Builder forgetGateBiasInit(double biasInit) {
this.setForgetGateBiasInit(biasInit);
return this;
}
/**
* Activation function for the LSTM gates. Note: This should be bounded to range 0-1: sigmoid or hard sigmoid,
* for example
*
* @param gateActivationFn Activation function for the LSTM gates
*/
public Builder gateActivationFunction(String gateActivationFn) {
return gateActivationFunction(Activation.fromString(gateActivationFn));
}
/**
* Activation function for the LSTM gates. Note: This should be bounded to range 0-1: sigmoid or hard sigmoid,
* for example
*
* @param gateActivationFn Activation function for the LSTM gates
*/
public Builder gateActivationFunction(Activation gateActivationFn) {
return gateActivationFunction(gateActivationFn.getActivationFunction());
}
/**
* Activation function for the LSTM gates. Note: This should be bounded to range 0-1: sigmoid or hard sigmoid,
* for example
*
* @param gateActivationFn Activation function for the LSTM gates
*/
public Builder gateActivationFunction(IActivation gateActivationFn) {
this.setGateActivationFn(gateActivationFn);
return this;
}
/**
* When using a helper (CuDNN or MKLDNN in some cases) and an error is encountered, should fallback to the non-helper implementation be allowed?
* If set to false, an exception in the helper will be propagated back to the user. If false, the built-in
* (non-helper) implementation for GravesBidirectionalLSTM will be used
*
* @param allowFallback Whether fallback to non-helper implementation should be used
*/
public Builder helperAllowFallback(boolean allowFallback) {
this.setHelperAllowFallback(allowFallback);
return (Builder) this;
}
@SuppressWarnings("unchecked")
public GravesBidirectionalLSTM build() {
return new GravesBidirectionalLSTM(this);
}
}
}