Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.deeplearning4j.nn.conf.layers.Subsampling1DLayer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.NoArgsConstructor;
import lombok.ToString;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.RNNFormat;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.deeplearning4j.util.Convolution1DUtils;
import org.deeplearning4j.util.ConvolutionUtils;
import org.deeplearning4j.util.ValidationUtils;
import org.nd4j.common.util.ArrayUtil;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Arrays;
import java.util.Collection;
import java.util.Map;
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public class Subsampling1DLayer extends SubsamplingLayer {
/*
* Currently, we just subclass off the SubsamplingLayer and hard code the "width" dimension to 1.
* TODO: We will eventually want to NOT subclass off of SubsamplingLayer.
* This approach treats a multivariate time series with L timesteps and
* P variables as an L x 1 x P image (L rows high, 1 column wide, P
* channels deep). The kernel should be H trainingListeners, int layerIndex, INDArray layerParamsView,
boolean initializeParams, DataType networkDataType) {
org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling1DLayer ret =
new org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling1DLayer(conf, networkDataType);
ret.setListeners(trainingListeners);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
if (inputType == null || inputType.getType() != InputType.Type.RNN) {
throw new IllegalStateException("Invalid input for Subsampling1D layer (layer name=\"" + getLayerName()
+ "\"): Expected RNN input, got " + inputType);
}
InputType.InputTypeRecurrent r = (InputType.InputTypeRecurrent) inputType;
long inputTsLength = r.getTimeSeriesLength();
long outLength;
if (inputTsLength < 0) {
//Probably: user did InputType.recurrent(x) without specifying sequence length
outLength = -1;
} else {
outLength = Convolution1DUtils.getOutputSize(inputTsLength, kernelSize[0], stride[0], padding[0],
convolutionMode, dilation[0]);
}
return InputType.recurrent(r.getSize(), outLength, r.getFormat());
}
@Override
public void setNIn(InputType inputType, boolean override) {
//No op: subsampling layer doesn't have nIn value
if(cnn2dDataFormat == null || override) {
if(inputType.getType() == InputType.Type.RNN) {
InputType.InputTypeRecurrent inputTypeConvolutional = (InputType.InputTypeRecurrent) inputType;
this.cnn2dDataFormat = inputTypeConvolutional.getFormat() == RNNFormat.NCW ? CNN2DFormat.NCHW : CNN2DFormat.NHWC;
} else if(inputType.getType() == InputType.Type.CNN) {
InputType.InputTypeConvolutional inputTypeConvolutional = (InputType.InputTypeConvolutional) inputType;
this.cnn2dDataFormat = inputTypeConvolutional.getFormat();
}
}
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
if (inputType == null) {
throw new IllegalStateException("Invalid input for Subsampling1D layer (layer name=\"" + getLayerName()
+ "\"): input is null");
}
return InputTypeUtil.getPreprocessorForInputTypeRnnLayers(inputType, RNNFormat.NCW, getLayerName());
}
@Override
public Subsampling1DLayer clone() {
Subsampling1DLayer clone = (Subsampling1DLayer) super.clone();
if (clone.kernelSize != null) {
clone.kernelSize = clone.kernelSize.clone();
}
if (clone.stride != null) {
clone.stride = clone.stride.clone();
}
if (clone.padding != null) {
clone.padding = clone.padding.clone();
}
if (clone.dilation != null) {
clone.dilation = clone.dilation.clone();
}
return clone;
}
public static class Builder extends BaseSubsamplingBuilder {
private static final org.deeplearning4j.nn.conf.layers.PoolingType DEFAULT_POOLING =
org.deeplearning4j.nn.conf.layers.PoolingType.MAX;
private static final int DEFAULT_KERNEL = 2;
private static final int DEFAULT_STRIDE = 1;
private static final int DEFAULT_PADDING = 0;
public Builder(PoolingType poolingType, int kernelSize, int stride) {
this(poolingType, kernelSize, stride, DEFAULT_PADDING);
}
public Builder(PoolingType poolingType, int kernelSize) {
this(poolingType, kernelSize, DEFAULT_STRIDE, DEFAULT_PADDING);
}
public Builder(org.deeplearning4j.nn.conf.layers.PoolingType poolingType, int kernelSize) {
this(poolingType, kernelSize, DEFAULT_STRIDE, DEFAULT_PADDING);
}
public Builder(int kernelSize, int stride, int padding) {
this(DEFAULT_POOLING, kernelSize, stride, padding);
}
public Builder(int kernelSize, int stride) {
this(DEFAULT_POOLING, kernelSize, stride, DEFAULT_PADDING);
}
public Builder(int kernelSize) {
this(DEFAULT_POOLING, kernelSize, DEFAULT_STRIDE, DEFAULT_PADDING);
}
public Builder(PoolingType poolingType) {
this(poolingType, DEFAULT_KERNEL, DEFAULT_STRIDE, DEFAULT_PADDING);
}
public Builder(org.deeplearning4j.nn.conf.layers.PoolingType poolingType) {
this(poolingType, DEFAULT_KERNEL, DEFAULT_STRIDE, DEFAULT_PADDING);
}
@Override
protected boolean allowCausal() {
return true;
}
public Builder() {
this(DEFAULT_POOLING, DEFAULT_KERNEL, DEFAULT_STRIDE, DEFAULT_PADDING);
}
public Builder(org.deeplearning4j.nn.conf.layers.PoolingType poolingType, int kernelSize, int stride,
int padding) {
setKernelSize(kernelSize);
setPadding(padding);
setStride(stride);
}
public Builder(PoolingType poolingType, int kernelSize, int stride, int padding) {
this.poolingType = poolingType.toPoolingType();
setKernelSize(kernelSize);
setStride(stride);
setPadding(padding);
}
@SuppressWarnings("unchecked")
public Subsampling1DLayer build() {
if (poolingType == org.deeplearning4j.nn.conf.layers.PoolingType.PNORM && pnorm <= 0) {
throw new IllegalStateException(
"Incorrect Subsampling config: p-norm must be set when using PoolingType.PNORM");
}
ConvolutionUtils.validateConvolutionModePadding(convolutionMode, padding);
ConvolutionUtils.validateCnnKernelStridePadding(kernelSize, stride, padding);
return new Subsampling1DLayer(this);
}
/**
* Kernel size
*
* @param kernelSize kernel size
*/
public Builder kernelSize(int kernelSize) {
this.setKernelSize(kernelSize);
return this;
}
/**
* Stride
*
* @param stride stride value
*/
public Builder stride(int stride) {
this.setStride(stride);
return this;
}
/**
* Padding
*
* @param padding padding value
*/
public Builder padding(int padding) {
this.setPadding(padding);
return this;
}
/**
* Kernel size
*
* @param kernelSize kernel size
*/
@Override
public void setKernelSize(int... kernelSize) {
this.kernelSize[0] = ValidationUtils.validate1NonNegative(kernelSize, "kernelSize")[0];
}
/**
* Stride
*
* @param stride stride value
*/
@Override
public void setStride(int... stride) {
this.stride = ConvolutionUtils.getIntConfig(stride,1);
}
/**
* Padding
*
* @param padding padding value
*/
@Override
public void setPadding(int... padding) {
this.padding = ConvolutionUtils.getIntConfig(padding,1);
}
}
}