All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.conf.layers.Subsampling3DLayer Maven / Gradle / Ivy

/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.deeplearning4j.nn.conf.layers;

import lombok.*;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.ConvolutionMode;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.params.EmptyParamInitializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.deeplearning4j.util.Convolution3DUtils;
import org.deeplearning4j.util.ConvolutionUtils;
import org.deeplearning4j.util.ValidationUtils;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.exception.ND4JArraySizeException;
import org.nd4j.linalg.learning.regularization.Regularization;

import java.util.Collection;
import java.util.List;
import java.util.Map;

@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public class Subsampling3DLayer extends NoParamLayer {

    protected ConvolutionMode convolutionMode = ConvolutionMode.Truncate;
    protected org.deeplearning4j.nn.conf.layers.PoolingType poolingType;
    protected int[] kernelSize;
    protected int[] stride;
    protected int[] padding;
    protected int[] dilation;
    protected boolean cudnnAllowFallback = true;
    protected Convolution3D.DataFormat dataFormat = Convolution3D.DataFormat.NCDHW; //Default for 1.0.0-beta3 and earlier (before config added)

    public enum PoolingType {
        MAX, AVG;

        public org.deeplearning4j.nn.conf.layers.PoolingType toPoolingType() {
            switch (this) {
                case MAX:
                    return org.deeplearning4j.nn.conf.layers.PoolingType.MAX;
                case AVG:
                    return org.deeplearning4j.nn.conf.layers.PoolingType.AVG;
            }
            throw new UnsupportedOperationException("Unknown/not supported pooling type: " + this);
        }
    }

    protected Subsampling3DLayer(Builder builder) {
        super(builder);
        this.poolingType = builder.poolingType;
        if (builder.kernelSize.length != 3) {
            throw new IllegalArgumentException("Kernel size must be length 3");
        }
        this.kernelSize = builder.kernelSize;
        if (builder.stride.length != 3) {
            throw new IllegalArgumentException("Invalid stride, must be length 3");
        }
        this.stride = builder.stride;
        this.padding = builder.padding;
        this.dilation = builder.dilation;
        this.convolutionMode = builder.convolutionMode;
        this.cudnnAllowFallback = builder.cudnnAllowFallback;
        this.dataFormat = builder.dataFormat;
    }

    @Override
    public Subsampling3DLayer clone() {
        Subsampling3DLayer clone = (Subsampling3DLayer) super.clone();

        if (clone.kernelSize != null) {
            clone.kernelSize = clone.kernelSize.clone();
        }
        if (clone.stride != null) {
            clone.stride = clone.stride.clone();
        }
        if (clone.padding != null) {
            clone.padding = clone.padding.clone();
        }
        if (clone.dilation != null) {
            clone.dilation = clone.dilation.clone();
        }
        return clone;
    }

    @Override
    public org.deeplearning4j.nn.api.Layer instantiate(NeuralNetConfiguration conf,
                                                       Collection iterationListeners, int layerIndex, INDArray layerParamsView,
                                                       boolean initializeParams, DataType networkDataType) {
        org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer ret =
                        new org.deeplearning4j.nn.layers.convolution.subsampling.Subsampling3DLayer(conf, networkDataType);
        ret.setListeners(iterationListeners);
        ret.setIndex(layerIndex);
        ret.setParamsViewArray(layerParamsView);
        Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
        ret.setParamTable(paramTable);
        ret.setConf(conf);
        return ret;
    }

    @Override
    public ParamInitializer initializer() {
        return EmptyParamInitializer.getInstance();
    }

    @Override
    public InputType getOutputType(int layerIndex, InputType inputType) {
        if (inputType == null || inputType.getType() != InputType.Type.CNN3D) {
            throw new IllegalStateException("Invalid input for Subsampling 3D layer (layer name=\"" + getLayerName()
                            + "\"): Expected CNN input, got " + inputType);
        }

        long inChannels = ((InputType.InputTypeConvolutional3D) inputType).getChannels();
        if (inChannels > Integer.MAX_VALUE)
            throw new ND4JArraySizeException();
        return InputTypeUtil.getOutputTypeCnn3DLayers(inputType, dataFormat, kernelSize, stride, padding, new int[] {1, 1, 1}, // no dilation
                        convolutionMode, (int) inChannels,
                        layerIndex, getLayerName(), Subsampling3DLayer.class);
    }

    @Override
    public void setNIn(InputType inputType, boolean override) {
        //No op: subsampling layer doesn't have nIn value
    }

    @Override
    public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
        if (inputType == null) {
            throw new IllegalStateException("Invalid input for Subsampling 3D layer (layer name=\"" + getLayerName()
                            + "\"): input is null");
        }

        return InputTypeUtil.getPreProcessorForInputTypeCnn3DLayers(inputType, getLayerName());
    }

    @Override
    public List getRegularizationByParam(String paramName) {
        //Not applicable
        return null;
    }

    @Override
    public boolean isPretrainParam(String paramName) {
        throw new UnsupportedOperationException("SubsamplingLayer does not contain parameters");
    }

    @Override
    public LayerMemoryReport getMemoryReport(InputType inputType) {
        InputType.InputTypeConvolutional3D c = (InputType.InputTypeConvolutional3D) inputType;
        InputType.InputTypeConvolutional3D outputType =
                        (InputType.InputTypeConvolutional3D) getOutputType(-1, inputType);
        val actElementsPerEx = outputType.arrayElementsPerExample();

        //During forward pass: im2col array + reduce. Reduce is counted as activations, so only im2col is working mem
        val im2colSizePerEx = c.getChannels() * outputType.getHeight() * outputType.getWidth() * outputType.getDepth()
                        * kernelSize[0] * kernelSize[1];

        //Current implementation does NOT cache im2col etc... which means: it's recalculated on each backward pass
        long trainingWorkingSizePerEx = im2colSizePerEx;
        if (getIDropout() != null) {
            //Dup on the input before dropout, but only for training
            trainingWorkingSizePerEx += inputType.arrayElementsPerExample();
        }

        return new LayerMemoryReport.Builder(layerName, Subsampling3DLayer.class, inputType, outputType)
                        .standardMemory(0, 0) //No params
                        .workingMemory(0, im2colSizePerEx, 0, trainingWorkingSizePerEx)
                        .cacheMemory(MemoryReport.CACHE_MODE_ALL_ZEROS, MemoryReport.CACHE_MODE_ALL_ZEROS) //No caching
                        .build();
    }

    @NoArgsConstructor
    @Getter
    @Setter
    public static class Builder extends BaseSubsamplingBuilder {

        /**
         * The data format for input and output activations.
NCDHW: activations (in/out) should have shape * [minibatch, channels, depth, height, width]
NDHWC: activations (in/out) should have shape [minibatch, * depth, height, width, channels]
*/ protected Convolution3D.DataFormat dataFormat = Convolution3D.DataFormat.NCDHW; public Builder(PoolingType poolingType, int[] kernelSize, int[] stride) { super(poolingType, kernelSize, stride); } public Builder(PoolingType poolingType, int[] kernelSize) { super(poolingType, kernelSize); } public Builder(PoolingType poolingType, int[] kernelSize, int[] stride, int[] padding) { super(poolingType, kernelSize, stride, padding); } public Builder(org.deeplearning4j.nn.conf.layers.PoolingType poolingType, int[] kernelSize) { super(poolingType, kernelSize); } public Builder(org.deeplearning4j.nn.conf.layers.PoolingType poolingType, int[] kernelSize, int[] stride, int[] padding) { super(poolingType, kernelSize, stride, padding); } public Builder(int[] kernelSize, int[] stride, int[] padding) { super(kernelSize, stride, padding); } public Builder(int[] kernelSize, int[] stride) { super(kernelSize, stride); } public Builder(int... kernelSize) { super(kernelSize); } public Builder(PoolingType poolingType) { super(poolingType); } public Builder(org.deeplearning4j.nn.conf.layers.PoolingType poolingType) { super(poolingType); } /** * Kernel size * * @param kernelSize kernel size in height and width dimensions */ public Builder kernelSize(int... kernelSize) { this.setKernelSize(kernelSize); return this; } /** * Stride * * @param stride stride in height and width dimensions */ public Builder stride(int... stride) { this.setStride(stride); return this; } /** * Padding * * @param padding padding in the height and width dimensions */ public Builder padding(int... padding) { this.setPadding(padding); return this; } /** * The data format for input and output activations.
NCDHW: activations (in/out) should have shape * [minibatch, channels, depth, height, width]
NDHWC: activations (in/out) should have shape [minibatch, * depth, height, width, channels]
* * @param dataFormat Data format to use for activations */ public Builder dataFormat(Convolution3D.DataFormat dataFormat) { this.setDataFormat(dataFormat); return this; } @Override @SuppressWarnings("unchecked") public Subsampling3DLayer build() { ConvolutionUtils.validateConvolutionModePadding(convolutionMode, padding); Convolution3DUtils.validateCnn3DKernelStridePadding(kernelSize, stride, padding); return new Subsampling3DLayer(this); } @Override public void setKernelSize(int... kernelSize) { this.kernelSize = ValidationUtils.validate3NonNegative(kernelSize, "kernelSize"); } /** * Stride * * @param stride stride in height and width dimensions */ @Override public void setStride(int... stride) { this.stride = ValidationUtils.validate3NonNegative(stride, "stride"); } /** * Padding * * @param padding padding in the height and width dimensions */ @Override public void setPadding(int... padding) { this.padding = ValidationUtils.validate3NonNegative(padding, "padding"); } /** * Dilation * * @param dilation padding in the height and width dimensions */ @Override public void setDilation(int... dilation) { this.dilation = ValidationUtils.validate3NonNegative(dilation, "dilation"); } } @Getter @Setter @NoArgsConstructor protected static abstract class BaseSubsamplingBuilder> extends Layer.Builder { protected org.deeplearning4j.nn.conf.layers.PoolingType poolingType = org.deeplearning4j.nn.conf.layers.PoolingType.MAX; protected int[] kernelSize = new int[] {1, 1, 1}; protected int[] stride = new int[] {2, 2, 2}; protected int[] padding = new int[] {0, 0, 0}; @Setter(AccessLevel.NONE) protected int[] dilation = new int[] {1, 1, 1}; /** * Set the convolution mode for the Convolution layer. See {@link ConvolutionMode} for more details * */ protected ConvolutionMode convolutionMode = ConvolutionMode.Same; /** * When using CuDNN and an error is encountered, should fallback to the non-CuDNN implementatation be allowed? * If set to false, an exception in CuDNN will be propagated back to the user. If false, the built-in * (non-CuDNN) implementation for ConvolutionLayer will be used */ protected boolean cudnnAllowFallback = true; public void setDilation(int... dilation) { Preconditions.checkArgument(dilation.length == 1 || dilation.length == 3, "Must have 1 or 3 dilation values - got %s", dilation); if (dilation.length == 1) { dilation(dilation[0], dilation[0], dilation[0]); } else { dilation(dilation[0], dilation[1], dilation[2]); } } protected BaseSubsamplingBuilder(PoolingType poolingType, int[] kernelSize, int[] stride) { this.setPoolingType(poolingType.toPoolingType()); this.setKernelSize(kernelSize); this.setStride(stride); } protected BaseSubsamplingBuilder(PoolingType poolingType, int[] kernelSize) { this.setPoolingType(poolingType.toPoolingType()); this.setKernelSize(kernelSize); } protected BaseSubsamplingBuilder(PoolingType poolingType, int[] kernelSize, int[] stride, int[] padding) { this.setPoolingType(poolingType.toPoolingType()); this.setKernelSize(kernelSize); this.setStride(stride); this.setPadding(padding); } protected BaseSubsamplingBuilder(org.deeplearning4j.nn.conf.layers.PoolingType poolingType, int[] kernelSize) { this.setPoolingType(poolingType); this.setKernelSize(kernelSize); } protected BaseSubsamplingBuilder(org.deeplearning4j.nn.conf.layers.PoolingType poolingType, int[] kernelSize, int[] stride, int[] padding) { this.setPoolingType(poolingType); this.setKernelSize(kernelSize); this.setStride(stride); this.setPadding(padding); } protected BaseSubsamplingBuilder(int[] kernelSize, int[] stride, int[] padding) { this.setKernelSize(kernelSize); this.setStride(stride); this.setPadding(padding); } protected BaseSubsamplingBuilder(int[] kernelSize, int[] stride) { this.setKernelSize(kernelSize); this.setStride(stride); } protected BaseSubsamplingBuilder(int... kernelSize) { this.setKernelSize(kernelSize); } protected BaseSubsamplingBuilder(PoolingType poolingType) { this.setPoolingType(poolingType.toPoolingType()); } protected BaseSubsamplingBuilder(org.deeplearning4j.nn.conf.layers.PoolingType poolingType) { this.setPoolingType(poolingType); } protected void setConvolutionMode(ConvolutionMode convolutionMode){ Preconditions.checkState(convolutionMode != ConvolutionMode.Causal, "Causal convolution mode can only be used with 1D" + " convolutional neural network layers"); this.convolutionMode = convolutionMode; } /** * Set the convolution mode for the Convolution layer. See {@link ConvolutionMode} for more details * * @param convolutionMode Convolution mode for layer */ public T convolutionMode(ConvolutionMode convolutionMode) { this.setConvolutionMode(convolutionMode); return (T) this; } public T poolingType(PoolingType poolingType) { this.setPoolingType(poolingType.toPoolingType()); return (T) this; } public T poolingType(org.deeplearning4j.nn.conf.layers.PoolingType poolingType){ this.setPoolingType(poolingType); return (T) this; } public T dilation(int dDepth, int dHeight, int dWidth) { this.setDilation(new int[] {dDepth, dHeight, dWidth}); return (T) this; } /** * When using CuDNN and an error is encountered, should fallback to the non-CuDNN implementatation be allowed? * If set to false, an exception in CuDNN will be propagated back to the user. If true, the built-in * (non-CuDNN) implementation for ConvolutionLayer will be used * * @deprecated Use {@link #helperAllowFallback(boolean)} * * @param allowFallback Whether fallback to non-CuDNN implementation should be used */ @Deprecated public T cudnnAllowFallback(boolean allowFallback) { this.setCudnnAllowFallback(allowFallback); return (T) this; } /** * When using CuDNN or MKLDNN and an error is encountered, should fallback to the non-helper implementation be allowed? * If set to false, an exception in the helper will be propagated back to the user. If true, the built-in * (non-MKL/CuDNN) implementation for Subsampling3DLayer will be used * * @param allowFallback Whether fallback to non-CuDNN implementation should be used */ public T helperAllowFallback(boolean allowFallback) { this.cudnnAllowFallback = allowFallback; return (T) this; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy