All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.conf.layers.SubsamplingLayer Maven / Gradle / Ivy

/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.deeplearning4j.nn.conf.layers;

import lombok.*;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.ConvolutionMode;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.params.EmptyParamInitializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.deeplearning4j.util.ConvolutionUtils;
import org.deeplearning4j.util.ValidationUtils;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.shade.jackson.annotation.JsonIgnore;

import java.util.Collection;
import java.util.Map;

@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public class SubsamplingLayer extends NoParamLayer {

    protected ConvolutionMode convolutionMode = ConvolutionMode.Truncate; //Default to truncate here - default for 0.6.0 and earlier networks on JSON deserialization
    protected org.deeplearning4j.nn.conf.layers.PoolingType poolingType;
    protected int[] kernelSize; // Same as filter size from the last conv layer
    protected int[] stride; // Default is 2. Down-sample by a factor of 2
    protected int[] padding;
    protected int[] dilation = new int[] {1, 1};
    protected int pnorm;
    protected double eps;
    protected boolean cudnnAllowFallback = true;
    protected CNN2DFormat cnn2dDataFormat = CNN2DFormat.NCHW; //default value for legacy reasons
    public final static CNN2DFormat DEFAULT_FORMAT = CNN2DFormat.NCHW;
    @JsonIgnore
    @EqualsAndHashCode.Exclude
    private boolean defaultValueOverridden = false;

    /*
    Default here for JSON deserialization of 1.0.0-beta4 and earlier models. New models default to false via builder.
    This impacts average pooling only - whether the divisor should include or exclude padding along image edges.
    DL4J originally included padding in the count, versions after 1.0.0-beta4 will exclude it by default.
     */
    protected boolean avgPoolIncludePadInDivisor = true;

    public enum PoolingType {
        MAX, AVG, SUM, PNORM;

        public org.deeplearning4j.nn.conf.layers.PoolingType toPoolingType() {
            switch (this) {
                case MAX:
                    return org.deeplearning4j.nn.conf.layers.PoolingType.MAX;
                case AVG:
                    return org.deeplearning4j.nn.conf.layers.PoolingType.AVG;
                case SUM:
                    return org.deeplearning4j.nn.conf.layers.PoolingType.SUM;
                case PNORM:
                    return org.deeplearning4j.nn.conf.layers.PoolingType.PNORM;
            }
            throw new UnsupportedOperationException("Unknown/not supported pooling type: " + this);
        }
    }

    protected SubsamplingLayer(BaseSubsamplingBuilder builder) {
        super(builder);
        this.poolingType = builder.poolingType;
        if (builder.kernelSize.length != 2) {
            throw new IllegalArgumentException("Kernel size of should be rows x columns (a 2d array)");
        }
        this.kernelSize = builder.kernelSize;
        if (builder.stride.length != 2) {
            throw new IllegalArgumentException("Invalid stride, must be length 2");
        }
        this.stride = builder.stride;
        this.padding = builder.padding;
        this.convolutionMode = builder.convolutionMode;
        this.cnn2dDataFormat = builder.cnn2DFormat;

        if (builder instanceof Builder) {
            this.dilation = ((Builder) builder).dilation;
        }
        
        this.pnorm = builder.pnorm;
        this.eps = builder.eps;
        this.cudnnAllowFallback = builder.cudnnAllowFallback;
        this.avgPoolIncludePadInDivisor = builder.avgPoolIncludePadInDivisor;
    }

    @Override
    public SubsamplingLayer clone() {
        SubsamplingLayer clone = (SubsamplingLayer) super.clone();

        if (clone.kernelSize != null) {
            clone.kernelSize = clone.kernelSize.clone();
        }
        if (clone.stride != null) {
            clone.stride = clone.stride.clone();
        }
        if (clone.padding != null) {
            clone.padding = clone.padding.clone();
        }
        if (clone.dilation != null) {
            clone.dilation = clone.dilation.clone();
        }

        return clone;
    }

    @Override
    public org.deeplearning4j.nn.api.Layer instantiate(NeuralNetConfiguration conf,
                                                       Collection trainingListeners, int layerIndex, INDArray layerParamsView,
                                                       boolean initializeParams, DataType networkDataType) {
        org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer ret =
                new org.deeplearning4j.nn.layers.convolution.subsampling.SubsamplingLayer(conf, networkDataType);
        ret.setListeners(trainingListeners);
        ret.setIndex(layerIndex);
        ret.setParamsViewArray(layerParamsView);
        Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
        ret.setParamTable(paramTable);
        ret.setConf(conf);
        return ret;
    }

    @Override
    public ParamInitializer initializer() {
        return EmptyParamInitializer.getInstance();
    }

    @Override
    public InputType getOutputType(int layerIndex, InputType inputType) {
        if (inputType == null || inputType.getType() != InputType.Type.CNN) {
            throw new IllegalStateException("Invalid input for Subsampling layer (layer name=\"" + getLayerName()
                    + "\"): Expected CNN input, got " + inputType);
        }

        return InputTypeUtil.getOutputTypeCnnLayers(inputType, kernelSize, stride, padding, dilation, convolutionMode,
                ((InputType.InputTypeConvolutional) inputType).getChannels(), layerIndex, getLayerName(),
                cnn2dDataFormat, SubsamplingLayer.class);
    }

    @Override
    public void setNIn(InputType inputType, boolean override) {
        //No op: subsampling layer doesn't have nIn value
        if(!defaultValueOverridden || override) {
            this.cnn2dDataFormat = ((InputType.InputTypeConvolutional) inputType).getFormat();
            defaultValueOverridden = true;
        }
    }

    @Override
    public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
        if (inputType == null) {
            throw new IllegalStateException("Invalid input for Subsampling layer (layer name=\"" + getLayerName()
                    + "\"): input is null");
        }

        return InputTypeUtil.getPreProcessorForInputTypeCnnLayers(inputType, getLayerName());
    }

    @Override
    public boolean isPretrainParam(String paramName) {
        throw new UnsupportedOperationException("SubsamplingLayer does not contain parameters");
    }

    @Override
    public LayerMemoryReport getMemoryReport(InputType inputType) {
        InputType.InputTypeConvolutional c = (InputType.InputTypeConvolutional) inputType;
        InputType.InputTypeConvolutional outputType = (InputType.InputTypeConvolutional) getOutputType(-1, inputType);
        val actElementsPerEx = outputType.arrayElementsPerExample();

        //TODO Subsampling helper memory use... (CuDNN etc)

        //During forward pass: im2col array + reduce. Reduce is counted as activations, so only im2col is working mem
        val im2colSizePerEx = c.getChannels() * outputType.getHeight() * outputType.getWidth() * kernelSize[0]
                * kernelSize[1];

        //Current implementation does NOT cache im2col etc... which means: it's recalculated on each backward pass
        long trainingWorkingSizePerEx = im2colSizePerEx;
        if (getIDropout() != null) {
            //Dup on the input before dropout, but only for training
            trainingWorkingSizePerEx += inputType.arrayElementsPerExample();
        }

        return new LayerMemoryReport.Builder(layerName, SubsamplingLayer.class, inputType, outputType)
                .standardMemory(0, 0) //No params
                .workingMemory(0, im2colSizePerEx, 0, trainingWorkingSizePerEx)
                .cacheMemory(MemoryReport.CACHE_MODE_ALL_ZEROS, MemoryReport.CACHE_MODE_ALL_ZEROS) //No caching
                .build();
    }

    public int getPnorm() {
        return pnorm;
    }

    public double getEps() {
        return eps;
    }

    @NoArgsConstructor
    @Getter
    @Setter
    public static class Builder extends BaseSubsamplingBuilder {

        /**
         * Kernel dilation. Default: {1, 1}, which is standard convolutions. Used for implementing dilated convolutions,
         * which are also known as atrous convolutions.
NOTE: Kernel dilation is less common in practice for * subsampling layers, compared to convolutional layers. * * For more details, see: * Yu and Koltun (2014) and * Chen et al. (2014), as well as * * http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html#dilated-convolutions
* * Dilation for kernel */ private int[] dilation = new int[] {1, 1}; public Builder(PoolingType poolingType, int[] kernelSize, int[] stride) { super(poolingType, kernelSize, stride); } public Builder(PoolingType poolingType, int[] kernelSize) { super(poolingType, kernelSize); } public Builder(PoolingType poolingType, int[] kernelSize, int[] stride, int[] padding) { super(poolingType, kernelSize, stride, padding); } public Builder(org.deeplearning4j.nn.conf.layers.PoolingType poolingType, int[] kernelSize) { super(poolingType, kernelSize); } public Builder(org.deeplearning4j.nn.conf.layers.PoolingType poolingType, int[] kernelSize, int[] stride, int[] padding) { super(poolingType, kernelSize, stride, padding); } public Builder(int[] kernelSize, int[] stride, int[] padding) { super(kernelSize, stride, padding); } public Builder(int[] kernelSize, int[] stride) { super(kernelSize, stride); } public Builder(int... kernelSize) { super(kernelSize); } public Builder(PoolingType poolingType) { super(poolingType); } public Builder(org.deeplearning4j.nn.conf.layers.PoolingType poolingType) { super(poolingType); } @Override protected boolean allowCausal() { //Only conv1d/subsampling1d can use causal mode return false; } /** * Kernel size * * @param kernelSize kernel size in height and width dimensions */ public Builder kernelSize(int... kernelSize) { this.setKernelSize(kernelSize); return this; } /** * Stride * * @param stride stride in height and width dimensions */ public Builder stride(int... stride) { this.setStride(stride); return this; } /** * Padding * * @param padding padding in the height and width dimensions */ public Builder padding(int... padding) { this.setPadding(padding); return this; } /** * Kernel dilation. Default: {1, 1}, which is standard convolutions. Used for implementing dilated convolutions, * which are also known as atrous convolutions.
NOTE: Kernel dilation is less common in practice for * subsampling layers, compared to convolutional layers. * * For more details, see: * Yu and Koltun (2014) and * Chen et al. (2014), as well as * * http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html#dilated-convolutions
* * @param dilation Dilation for kernel */ public Builder dilation(int... dilation) { this.setDilation(dilation); return this; } @Override @SuppressWarnings("unchecked") public SubsamplingLayer build() { if (poolingType == org.deeplearning4j.nn.conf.layers.PoolingType.PNORM && pnorm <= 0) { throw new IllegalStateException( "Incorrect Subsampling config: p-norm must be set when using PoolingType.PNORM"); } ConvolutionUtils.validateConvolutionModePadding(convolutionMode, padding); ConvolutionUtils.validateCnnKernelStridePadding(kernelSize, stride, padding); return new SubsamplingLayer(this); } @Override public void setKernelSize(int... kernelSize) { this.kernelSize = ValidationUtils.validate2NonNegative(kernelSize,false, "kernelSize"); } @Override public void setStride(int... stride) { this.stride = ValidationUtils.validate2NonNegative(stride, false, "stride"); } @Override public void setPadding(int... padding) { this.padding = ValidationUtils.validate2NonNegative(padding,false, "padding"); } public void setDilation(int[] dilation) { this.dilation = ValidationUtils.validate2NonNegative(dilation, false, "dilation"); } public void setDataFormat(CNN2DFormat format){ this.cnn2DFormat = format; } } @NoArgsConstructor @Getter @Setter protected static abstract class BaseSubsamplingBuilder> extends Layer.Builder { protected org.deeplearning4j.nn.conf.layers.PoolingType poolingType = org.deeplearning4j.nn.conf.layers.PoolingType.MAX; protected int[] kernelSize = new int[] {1, 1}; // Same as filter size from the last conv layer protected int[] stride = new int[] {2, 2}; // Default is 2. Down-sample by a factor of 2 protected int[] padding = new int[] {0, 0}; /** * Set the convolution mode for the Convolution layer. See {@link ConvolutionMode} for more details * * Convolution mode for layer */ protected ConvolutionMode convolutionMode = null; protected int pnorm; protected double eps = 1e-8; /** * When using CuDNN and an error is encountered, should fallback to the non-CuDNN implementatation be allowed? * If set to false, an exception in CuDNN will be propagated back to the user. If false, the built-in * (non-CuDNN) implementation for ConvolutionLayer will be used * * Whether fallback to non-CuDNN implementation should be used */ protected boolean cudnnAllowFallback = true; protected boolean avgPoolIncludePadInDivisor = false; /** * Configure the 2d data format */ protected CNN2DFormat cnn2DFormat = CNN2DFormat.NCHW; protected BaseSubsamplingBuilder(PoolingType poolingType, int[] kernelSize, int[] stride) { this.setPoolingType(poolingType.toPoolingType()); this.setKernelSize(kernelSize); this.setStride(stride); } protected BaseSubsamplingBuilder(PoolingType poolingType, int[] kernelSize) { this.setPoolingType(poolingType.toPoolingType()); this.setKernelSize(kernelSize); } protected BaseSubsamplingBuilder(PoolingType poolingType, int[] kernelSize, int[] stride, int[] padding) { this.setPoolingType(poolingType.toPoolingType()); this.setKernelSize(kernelSize); this.setStride(stride); this.setPadding(padding); } protected BaseSubsamplingBuilder(org.deeplearning4j.nn.conf.layers.PoolingType poolingType, int[] kernelSize) { this.setPoolingType(poolingType); this.setKernelSize(kernelSize); } protected BaseSubsamplingBuilder(org.deeplearning4j.nn.conf.layers.PoolingType poolingType, int[] kernelSize, int[] stride, int[] padding) { this.setPoolingType(poolingType); this.setKernelSize(kernelSize); this.setStride(stride); this.setPadding(padding); } protected BaseSubsamplingBuilder(int[] kernelSize, int[] stride, int[] padding) { this.setKernelSize(kernelSize); this.setStride(stride); this.setPadding(padding); } protected BaseSubsamplingBuilder(int[] kernelSize, int[] stride) { this.setKernelSize(kernelSize); this.setStride(stride); } protected BaseSubsamplingBuilder(int... kernelSize) { this.setKernelSize(kernelSize); } protected BaseSubsamplingBuilder(PoolingType poolingType) { this.setPoolingType(poolingType.toPoolingType()); } protected BaseSubsamplingBuilder(org.deeplearning4j.nn.conf.layers.PoolingType poolingType) { this.setPoolingType(poolingType); } public void setPnorm(int pnorm){ ValidationUtils.validateNonNegative(pnorm, "pnorm"); this.pnorm = pnorm; } public void setEps(double eps) { ValidationUtils.validateNonNegative(eps, "eps"); this.eps = eps; } protected abstract boolean allowCausal(); public void setConvolutionMode(ConvolutionMode convolutionMode){ Preconditions.checkState(allowCausal() || convolutionMode != ConvolutionMode.Causal, "Causal convolution mode can only be used with 1D" + " convolutional neural network layers"); this.convolutionMode = convolutionMode; } /** * Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last). * See {@link CNN2DFormat} for more details.
* Default: NCHW * @param cnn2DFormat Format for activations (in and out) */ public T dataFormat(CNN2DFormat cnn2DFormat) { this.cnn2DFormat = cnn2DFormat; return (T) this; } /** * Set the convolution mode for the Convolution layer. See {@link ConvolutionMode} for more details * * @param convolutionMode Convolution mode for layer */ public T convolutionMode(ConvolutionMode convolutionMode) { this.setConvolutionMode(convolutionMode); return (T) this; } public T poolingType(PoolingType poolingType) { this.setPoolingType(poolingType.toPoolingType()); return (T) this; } public T poolingType(org.deeplearning4j.nn.conf.layers.PoolingType poolingType){ this.setPoolingType(poolingType); return (T) this; } public T pnorm(int pnorm) { this.setPnorm(pnorm); return (T) this; } public T eps(double eps) { this.setEps(eps); return (T) this; } /** * When using CuDNN or MKLDNN and an error is encountered, should fallback to the non-helper implementation be allowed? * If set to false, an exception in the helper will be propagated back to the user. If true, the built-in * (non-MKL/CuDNN) implementation for ConvolutionLayer will be used * * @deprecated Use {@link #helperAllowFallback(boolean)} * * @param allowFallback Whether fallback to non-CuDNN implementation should be used */ @Deprecated public T cudnnAllowFallback(boolean allowFallback) { this.cudnnAllowFallback = allowFallback; return (T) this; } /** * When using CuDNN or MKLDNN and an error is encountered, should fallback to the non-helper implementation be allowed? * If set to false, an exception in the helper will be propagated back to the user. If true, the built-in * (non-MKL/CuDNN) implementation for SubsamplingLayer will be used * * @param allowFallback Whether fallback to non-CuDNN implementation should be used */ public T helperAllowFallback(boolean allowFallback) { this.cudnnAllowFallback = allowFallback; return (T) this; } /** * When doing average pooling, should the padding values be included in the divisor or not?
* Not applicable for max and p-norm pooling.
* Users should not usually set this - instead, leave it as the default (false). It is included mainly for backward * compatibility of older models
* Consider the following 2x2 segment along the right side of the image:
*
         * [A, P]
         * [B, P]
         * 
* Where A and B are actual values, and P is padding (0).
* With avgPoolIncludePadInDivisor = true, we have: out = (A+B+0+0)/4
* With avgPoolIncludePadInDivisor = false, we have: out = (A+B+0+0)/2
*
* Earlier versions of DL4J originally included padding in the count, newer versions exclude it.
* * @param avgPoolIncludePadInDivisor Whether the divisor should include or exclude padding for average pooling */ public T avgPoolIncludePadInDivisor(boolean avgPoolIncludePadInDivisor){ this.avgPoolIncludePadInDivisor = avgPoolIncludePadInDivisor; return (T) this; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy