Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers;
import lombok.*;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.conf.serde.legacy.LegacyIntArrayDeserializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.deeplearning4j.util.ValidationUtils;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.shade.jackson.databind.annotation.JsonDeserialize;
import java.util.Collection;
import java.util.Map;
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public class Upsampling2D extends BaseUpsamplingLayer {
@JsonDeserialize(using = LegacyIntArrayDeserializer.class)
protected int[] size;
protected CNN2DFormat format = CNN2DFormat.NCHW;
protected Upsampling2D(UpsamplingBuilder builder) {
super(builder);
this.size = builder.size;
this.format = ((Builder)builder).format;
}
@Override
public Upsampling2D clone() {
Upsampling2D clone = (Upsampling2D) super.clone();
return clone;
}
@Override
public org.deeplearning4j.nn.api.Layer instantiate(NeuralNetConfiguration conf,
Collection trainingListeners, int layerIndex, INDArray layerParamsView,
boolean initializeParams, DataType networkDataType) {
org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D ret =
new org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D(conf, networkDataType);
ret.setListeners(trainingListeners);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
if (inputType == null || inputType.getType() != InputType.Type.CNN) {
throw new IllegalStateException("Invalid input for Upsampling 2D layer (layer name=\"" + getLayerName()
+ "\"): Expected CNN input, got " + inputType);
}
InputType.InputTypeConvolutional i = (InputType.InputTypeConvolutional) inputType;
val inHeight = i.getHeight();
val inWidth = i.getWidth();
val inDepth = i.getChannels();
return InputType.convolutional(size[0] * inHeight, size[1] * inWidth, inDepth, i.getFormat());
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
if (inputType == null) {
throw new IllegalStateException("Invalid input for Upsampling 2D layer (layer name=\"" + getLayerName()
+ "\"): input is null");
}
return InputTypeUtil.getPreProcessorForInputTypeCnnLayers(inputType, getLayerName());
}
@Override
public LayerMemoryReport getMemoryReport(InputType inputType) {
InputType.InputTypeConvolutional c = (InputType.InputTypeConvolutional) inputType;
InputType.InputTypeConvolutional outputType = (InputType.InputTypeConvolutional) getOutputType(-1, inputType);
// During forward pass: im2col array + reduce. Reduce is counted as activations, so only im2col is working mem
val im2colSizePerEx =
c.getChannels() * outputType.getHeight() * outputType.getWidth() * size[0] * size[1];
// Current implementation does NOT cache im2col etc... which means: it's recalculated on each backward pass
long trainingWorkingSizePerEx = im2colSizePerEx;
if (getIDropout() != null) {
//Dup on the input before dropout, but only for training
trainingWorkingSizePerEx += inputType.arrayElementsPerExample();
}
return new LayerMemoryReport.Builder(layerName, Upsampling2D.class, inputType, outputType).standardMemory(0, 0) //No params
.workingMemory(0, im2colSizePerEx, 0, trainingWorkingSizePerEx)
.cacheMemory(MemoryReport.CACHE_MODE_ALL_ZEROS, MemoryReport.CACHE_MODE_ALL_ZEROS) //No caching
.build();
}
@Override
public void setNIn(InputType inputType, boolean override) {
if (inputType == null || inputType.getType() != InputType.Type.CNN) {
throw new IllegalStateException("Invalid input for Upsampling 2D layer (layer name=\"" + getLayerName()
+ "\"): Expected CNN input, got " + inputType);
}
this.format = ((InputType.InputTypeConvolutional)inputType).getFormat();
}
@NoArgsConstructor
public static class Builder extends UpsamplingBuilder {
protected CNN2DFormat format = CNN2DFormat.NCHW;
public Builder(int size) {
super(new int[] {size, size});
}
/**
* Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last).
* See {@link CNN2DFormat} for more details.
* Default: NCHW
* @param format Format for activations (in and out)
*/
public Builder dataFormat(CNN2DFormat format){
this.format = format;
return this;
}
/**
* Upsampling size int, used for both height and width
*
* @param size upsampling size in height and width dimensions
*/
public Builder size(int size) {
this.setSize(size, size);
return this;
}
/**
* Upsampling size array
*
* @param size upsampling size in height and width dimensions
*/
public Builder size(int[] size) {
this.setSize(size);
return this;
}
@Override
@SuppressWarnings("unchecked")
public Upsampling2D build() {
return new Upsampling2D(this);
}
@Override
public void setSize(int... size) {
this.size = ValidationUtils.validate2NonNegative(size, false, "size");
}
}
}