Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers;
import lombok.*;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.RNNFormat;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.params.EmptyParamInitializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.deeplearning4j.util.ValidationUtils;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Arrays;
import java.util.Collection;
import java.util.Map;
@Data
@NoArgsConstructor
@EqualsAndHashCode(callSuper = true)
public class ZeroPadding1DLayer extends NoParamLayer {
private int[] padding; // [padLeft, padRight]
private ZeroPadding1DLayer(Builder builder) {
super(builder);
this.padding = builder.padding;
}
public ZeroPadding1DLayer(int padding) {
this(new Builder(padding));
}
public ZeroPadding1DLayer(int padLeft, int padRight) {
this(new Builder(padLeft, padRight));
}
public ZeroPadding1DLayer(int[] padding) {
this(new Builder(padding));
}
@Override
public org.deeplearning4j.nn.api.Layer instantiate(NeuralNetConfiguration conf,
Collection trainingListeners, int layerIndex, INDArray layerParamsView,
boolean initializeParams, DataType networkDataType) {
org.deeplearning4j.nn.layers.convolution.ZeroPadding1DLayer ret =
new org.deeplearning4j.nn.layers.convolution.ZeroPadding1DLayer(conf, networkDataType);
ret.setListeners(trainingListeners);
ret.setIndex(layerIndex);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public ParamInitializer initializer() {
return EmptyParamInitializer.getInstance();
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
if (inputType == null || inputType.getType() != InputType.Type.RNN) {
throw new IllegalStateException("Invalid input for 1D CNN layer (layer index = " + layerIndex
+ ", layer name = \"" + getLayerName() + "\"): expect RNN input type with size > 0. Got: "
+ inputType);
}
InputType.InputTypeRecurrent recurrent = (InputType.InputTypeRecurrent) inputType;
return InputType.recurrent(recurrent.getSize(), recurrent.getTimeSeriesLength() + padding[0] + padding[1]);
}
@Override
public void setNIn(InputType inputType, boolean override) {
//No op
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
if (inputType == null) {
throw new IllegalStateException("Invalid input for ZeroPadding1DLayer layer (layer name=\"" + getLayerName()
+ "\"): input is null");
}
return InputTypeUtil.getPreprocessorForInputTypeRnnLayers(inputType, RNNFormat.NCW, getLayerName());
}
@Override
public boolean isPretrainParam(String paramName) {
throw new UnsupportedOperationException("ZeroPaddingLayer does not contain parameters");
}
@Override
public LayerMemoryReport getMemoryReport(InputType inputType) {
InputType outputType = getOutputType(-1, inputType);
return new LayerMemoryReport.Builder(layerName, ZeroPaddingLayer.class, inputType, outputType)
.standardMemory(0, 0) //No params
.workingMemory(0, 0, MemoryReport.CACHE_MODE_ALL_ZEROS, MemoryReport.CACHE_MODE_ALL_ZEROS)
.cacheMemory(MemoryReport.CACHE_MODE_ALL_ZEROS, MemoryReport.CACHE_MODE_ALL_ZEROS) //No caching
.build();
}
@Getter
@Setter
public static class Builder extends Layer.Builder {
/**
* Padding value for left and right. Must be length 2 array
*/
@Setter(AccessLevel.NONE)
private int[] padding = new int[] {0, 0}; //Padding: left, right
/**
* @param padding Padding value for left and right. Must be length 1 or 2 array.
*/
public void setPadding(int... padding) {
this.padding = ValidationUtils.validate2NonNegative(padding, false, "padding");
}
/**
* @param padding Padding for both the left and right
*/
public Builder(int padding) {
this(padding, padding);
}
/**
* @param padLeft Padding value for left
* @param padRight Padding value for right
*/
public Builder(int padLeft, int padRight) {
this(new int[] {padLeft, padRight});
}
/**
* @param padding Padding value for left and right. Must be length 1 or 2 array
*/
public Builder(@NonNull int... padding) {
this.setPadding(padding);
}
@Override
@SuppressWarnings("unchecked")
public ZeroPadding1DLayer build() {
for (int p : padding) {
if (p < 0) {
throw new IllegalStateException("Invalid zero padding layer config: padding [left, right]"
+ " must be > 0 for all elements. Got: " + Arrays.toString(padding));
}
}
return new ZeroPadding1DLayer(this);
}
}
}