org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers.convolutional;
import lombok.*;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.InputTypeUtil;
import org.deeplearning4j.nn.conf.layers.Layer;
import org.deeplearning4j.nn.conf.layers.NoParamLayer;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.layers.convolution.Cropping1DLayer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.deeplearning4j.util.ValidationUtils;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Collection;
import java.util.Map;
@Data
@NoArgsConstructor
@EqualsAndHashCode(callSuper = true)
public class Cropping1D extends NoParamLayer {
private int[] cropping;
/**
* @param cropTopBottom Amount of cropping to apply to both the top and the bottom of the input activations
*/
public Cropping1D(int cropTopBottom) {
this(cropTopBottom, cropTopBottom);
}
/**
* @param cropTop Amount of cropping to apply to the top of the input activations
* @param cropBottom Amount of cropping to apply to the bottom of the input activations
*/
public Cropping1D(int cropTop, int cropBottom) {
this(new Builder(cropTop, cropBottom));
}
/**
* @param cropping Cropping as a length 2 array, with values {@code [cropTop, cropBottom]}
*/
public Cropping1D(int[] cropping) {
this(new Builder(cropping));
}
protected Cropping1D(Builder builder) {
super(builder);
this.cropping = builder.cropping;
}
@Override
public org.deeplearning4j.nn.api.Layer instantiate(NeuralNetConfiguration conf,
Collection trainingListeners, int layerIndex, INDArray layerParamsView,
boolean initializeParams, DataType networkDataType) {
Cropping1DLayer ret = new Cropping1DLayer(conf, networkDataType);
ret.setListeners(trainingListeners);
ret.setIndex(layerIndex);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
if (inputType == null || inputType.getType() != InputType.Type.RNN) {
throw new IllegalStateException("Invalid input for 1D Cropping layer (layer index = " + layerIndex
+ ", layer name = \"" + getLayerName() + "\"): expect RNN input type with size > 0. Got: "
+ inputType);
}
InputType.InputTypeRecurrent cnn1d = (InputType.InputTypeRecurrent) inputType;
val length = cnn1d.getTimeSeriesLength();
val outLength = length - cropping[0] - cropping[1];
return InputType.recurrent(cnn1d.getSize(), outLength);
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
Preconditions.checkArgument(inputType != null, "Invalid input for Cropping1D layer (layer name=\""
+ getLayerName() + "\"): InputType is null");
return InputTypeUtil.getPreProcessorForInputTypeCnnLayers(inputType, getLayerName());
}
@Override
public LayerMemoryReport getMemoryReport(InputType inputType) {
return null;
}
@Getter
@Setter
public static class Builder extends Layer.Builder {
/**
* Cropping amount for top/bottom (in that order). Must be length 1 or 2 array.
*/
@Setter(AccessLevel.NONE)
private int[] cropping = new int[] {0, 0};
/**
* @param cropping Cropping amount for top/bottom (in that order). Must be length 1 or 2 array.
*/
public void setCropping(int... cropping) {
this.cropping = ValidationUtils.validate2NonNegative(cropping, true,"cropping");
}
public Builder() {
}
/**
* @param cropping Cropping amount for top/bottom (in that order). Must be length 1 or 2 array.
*/
public Builder(@NonNull int[] cropping) {
this.setCropping(cropping);
}
/**
* @param cropTopBottom Amount of cropping to apply to both the top and the bottom of the input activations
*/
public Builder(int cropTopBottom) {
this(cropTopBottom, cropTopBottom);
}
/**
* @param cropTop Amount of cropping to apply to the top of the input activations
* @param cropBottom Amount of cropping to apply to the bottom of the input activations
*/
public Builder(int cropTop, int cropBottom) {
this.setCropping(new int[]{cropTop, cropBottom});
}
public Cropping1D build() {
return new Cropping1D(this);
}
}
}