Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers.convolutional;
import lombok.*;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.InputTypeUtil;
import org.deeplearning4j.nn.conf.layers.Layer;
import org.deeplearning4j.nn.conf.layers.NoParamLayer;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.layers.convolution.Cropping2DLayer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.deeplearning4j.util.ConvolutionUtils;
import org.deeplearning4j.util.ValidationUtils;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Collection;
import java.util.Map;
@Data
@NoArgsConstructor
@EqualsAndHashCode(callSuper = true)
public class Cropping2D extends NoParamLayer {
private int[] cropping;
private CNN2DFormat dataFormat = CNN2DFormat.NCHW;
/**
* @param cropTopBottom Amount of cropping to apply to both the top and the bottom of the input activations
* @param cropLeftRight Amount of cropping to apply to both the left and the right of the input activations
*/
public Cropping2D(int cropTopBottom, int cropLeftRight) {
this(cropTopBottom, cropTopBottom, cropLeftRight, cropLeftRight);
}
public Cropping2D(CNN2DFormat dataFormat, int cropTopBottom, int cropLeftRight) {
this(dataFormat, cropTopBottom, cropTopBottom, cropLeftRight, cropLeftRight);
}
/**
* @param cropTop Amount of cropping to apply to the top of the input activations
* @param cropBottom Amount of cropping to apply to the bottom of the input activations
* @param cropLeft Amount of cropping to apply to the left of the input activations
* @param cropRight Amount of cropping to apply to the right of the input activations
*/
public Cropping2D(int cropTop, int cropBottom, int cropLeft, int cropRight) {
this(CNN2DFormat.NCHW, cropTop, cropBottom, cropLeft, cropRight);
}
public Cropping2D(CNN2DFormat format, int cropTop, int cropBottom, int cropLeft, int cropRight) {
this(new Builder(cropTop, cropBottom, cropLeft, cropRight).dataFormat(format));
}
/**
* @param cropping Cropping as either a length 2 array, with values {@code [cropTopBottom, cropLeftRight]}, or as a
* length 4 array, with values {@code [cropTop, cropBottom, cropLeft, cropRight]}
*/
public Cropping2D(int[] cropping) {
this(new Builder(cropping));
}
protected Cropping2D(Builder builder) {
super(builder);
this.cropping = builder.cropping;
this.dataFormat = builder.cnn2DFormat;
}
@Override
public org.deeplearning4j.nn.api.Layer instantiate(NeuralNetConfiguration conf,
Collection trainingListeners, int layerIndex, INDArray layerParamsView,
boolean initializeParams, DataType networkDataType) {
Cropping2DLayer ret = new Cropping2DLayer(conf, networkDataType);
ret.setListeners(trainingListeners);
ret.setIndex(layerIndex);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
int[] hwd = ConvolutionUtils.getHWDFromInputType(inputType);
int outH = hwd[0] - cropping[0] - cropping[1];
int outW = hwd[1] - cropping[2] - cropping[3];
InputType.InputTypeConvolutional c = (InputType.InputTypeConvolutional)inputType;
return InputType.convolutional(outH, outW, hwd[2], c.getFormat());
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
Preconditions.checkArgument(inputType != null, "Invalid input for Cropping2D layer (layer name=\""
+ getLayerName() + "\"): InputType is null");
return InputTypeUtil.getPreProcessorForInputTypeCnnLayers(inputType, getLayerName());
}
@Override
public LayerMemoryReport getMemoryReport(InputType inputType) {
return null;
}
@Override
public void setNIn(InputType inputType, boolean override) {
this.dataFormat = ((InputType.InputTypeConvolutional)inputType).getFormat();
}
@Getter
@Setter
public static class Builder extends Layer.Builder {
/**
* Cropping amount for top/bottom/left/right (in that order). A length 4 array.
*/
@Setter(AccessLevel.NONE)
private int[] cropping = new int[] {0, 0, 0, 0};
private CNN2DFormat cnn2DFormat = CNN2DFormat.NCHW;
/**
* Set the data format for the CNN activations - NCHW (channels first) or NHWC (channels last).
* See {@link CNN2DFormat} for more details.
* Default: NCHW
* @param format Format for activations (in and out)
*/
public Builder dataFormat(CNN2DFormat format){
this.cnn2DFormat = format;
return this;
}
/**
* @param cropping Cropping amount for top/bottom/left/right (in that order). Must be length 1, 2, or 4 array.
*/
public void setCropping(int... cropping) {
this.cropping = ValidationUtils.validate4NonNegative(cropping, "cropping");
}
public Builder() {
}
/**
* @param cropping Cropping amount for top/bottom/left/right (in that order). Must be length 4 array.
*/
public Builder(@NonNull int[] cropping) {
this.setCropping(cropping);
}
/**
* @param cropTopBottom Amount of cropping to apply to both the top and the bottom of the input activations
* @param cropLeftRight Amount of cropping to apply to both the left and the right of the input activations
*/
public Builder(int cropTopBottom, int cropLeftRight) {
this(cropTopBottom, cropTopBottom, cropLeftRight, cropLeftRight);
}
/**
* @param cropTop Amount of cropping to apply to the top of the input activations
* @param cropBottom Amount of cropping to apply to the bottom of the input activations
* @param cropLeft Amount of cropping to apply to the left of the input activations
* @param cropRight Amount of cropping to apply to the right of the input activations
*/
public Builder(int cropTop, int cropBottom, int cropLeft, int cropRight) {
this.setCropping(new int[] {cropTop, cropBottom, cropLeft, cropRight});
}
public Cropping2D build() {
return new Cropping2D(this);
}
}
}