org.deeplearning4j.nn.conf.layers.misc.ElementWiseMultiplicationLayer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers.misc;
import lombok.*;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.FeedForwardLayer;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.params.ElementWiseParamInitializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Collection;
import java.util.Map;
@Data
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public class ElementWiseMultiplicationLayer extends FeedForwardLayer {
// We have to add an empty constructor for custom layers otherwise we will have errors when loading the model
protected ElementWiseMultiplicationLayer() {}
protected ElementWiseMultiplicationLayer(Builder builder) {
super(builder);
}
@Override
public ElementWiseMultiplicationLayer clone() {
ElementWiseMultiplicationLayer clone = (ElementWiseMultiplicationLayer) super.clone();
return clone;
}
@Override
public Layer instantiate(NeuralNetConfiguration conf, Collection trainingListeners,
int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) {
if (this.nIn != this.nOut) {
throw new IllegalStateException("Element wise layer must have the same input and output size. Got nIn="
+ nIn + ", nOut=" + nOut);
}
org.deeplearning4j.nn.layers.feedforward.elementwise.ElementWiseMultiplicationLayer ret =
new org.deeplearning4j.nn.layers.feedforward.elementwise.ElementWiseMultiplicationLayer(conf, networkDataType);
ret.setListeners(trainingListeners);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public ParamInitializer initializer() {
return ElementWiseParamInitializer.getInstance();
}
/**
* This is a report of the estimated memory consumption for the given layer
*
* @param inputType Input type to the layer. Memory consumption is often a function of the input type
* @return Memory report for the layer
*/
@Override
public LayerMemoryReport getMemoryReport(InputType inputType) {
InputType outputType = getOutputType(-1, inputType);
val numParams = initializer().numParams(this);
val updaterStateSize = (int) getIUpdater().stateSize(numParams);
int trainSizeFixed = 0;
int trainSizeVariable = 0;
if (getIDropout() != null) {
if (false) {
//TODO drop connect
//Dup the weights... note that this does NOT depend on the minibatch size...
trainSizeVariable += 0; //TODO
} else {
//Assume we dup the input
trainSizeVariable += inputType.arrayElementsPerExample();
}
}
//Also, during backprop: we do a preOut call -> gives us activations size equal to the output size
// which is modified in-place by activation function backprop
// then we have 'epsilonNext' which is equivalent to input size
trainSizeVariable += outputType.arrayElementsPerExample();
return new LayerMemoryReport.Builder(layerName, ElementWiseMultiplicationLayer.class, inputType, outputType)
.standardMemory(numParams, updaterStateSize)
.workingMemory(0, 0, trainSizeFixed, trainSizeVariable) //No additional memory (beyond activations) for inference
.cacheMemory(MemoryReport.CACHE_MODE_ALL_ZEROS, MemoryReport.CACHE_MODE_ALL_ZEROS) //No caching in DenseLayer
.build();
}
@AllArgsConstructor
public static class Builder extends FeedForwardLayer.Builder {
@Override
@SuppressWarnings("unchecked")
public ElementWiseMultiplicationLayer build() {
return new ElementWiseMultiplicationLayer(this);
}
}
}