Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers.recurrent;
import lombok.*;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.GradientNormalization;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.RNNFormat;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer;
import org.deeplearning4j.nn.conf.layers.FeedForwardLayer;
import org.deeplearning4j.nn.conf.layers.Layer;
import org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.layers.recurrent.BidirectionalLayer;
import org.deeplearning4j.nn.params.BidirectionalParamInitializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.deeplearning4j.util.TimeSeriesUtils;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.learning.config.IUpdater;
import org.nd4j.linalg.learning.regularization.Regularization;
import org.nd4j.shade.jackson.annotation.JsonIgnoreProperties;
import java.util.Collection;
import java.util.List;
import java.util.Map;
import static org.nd4j.linalg.indexing.NDArrayIndex.interval;
import static org.nd4j.linalg.indexing.NDArrayIndex.point;
@NoArgsConstructor
@Data
@EqualsAndHashCode(callSuper = true, exclude = {"initializer"})
@JsonIgnoreProperties({"initializer"})
public class Bidirectional extends Layer {
/**
* This Mode enumeration defines how the activations for the forward and backward networks should be combined.
* ADD: out = forward + backward (elementwise addition) MUL: out = forward * backward (elementwise
* multiplication) AVERAGE: out = 0.5 * (forward + backward) CONCAT: Concatenate the activations. Where
* 'forward' is the activations for the forward RNN, and 'backward' is the activations for the backward RNN. In all
* cases except CONCAT, the output activations size is the same size as the standard RNN that is being wrapped by
* this layer. In the CONCAT case, the output activations size (dimension 1) is 2x larger than the standard RNN's
* activations array.
*/
public enum Mode {
ADD, MUL, AVERAGE, CONCAT
}
private Layer fwd;
private Layer bwd;
private Mode mode;
private transient BidirectionalParamInitializer initializer;
private Bidirectional(Builder builder) {
super(builder);
}
/**
* Create a Bidirectional wrapper, with the default Mode (CONCAT) for the specified layer
*
* @param layer layer to wrap
*/
public Bidirectional(@NonNull Layer layer) {
this(Mode.CONCAT, layer);
}
/**
* Create a Bidirectional wrapper for the specified layer
*
* @param mode Mode to use to combine activations. See {@link Mode} for details
* @param layer layer to wrap
*/
public Bidirectional(@NonNull Mode mode, @NonNull Layer layer) {
if (!(layer instanceof BaseRecurrentLayer || layer instanceof LastTimeStep
|| layer instanceof BaseWrapperLayer)) {
throw new IllegalArgumentException("Cannot wrap a non-recurrent layer: "
+ "config must extend BaseRecurrentLayer or LastTimeStep " + "Got class: "
+ layer.getClass());
}
this.fwd = layer;
this.bwd = layer.clone();
this.mode = mode;
}
public long getNOut() {
if (this.fwd instanceof LastTimeStep) {
return ((FeedForwardLayer) ((LastTimeStep) this.fwd).getUnderlying()).getNOut();
} else if(this.mode == Mode.CONCAT) {
return ((FeedForwardLayer) this.fwd).getNOut() * 2;
}
else {
return ((FeedForwardLayer) this.fwd).getNOut();
}
}
public long getNIn() {
if (this.fwd instanceof LastTimeStep) {
return ((FeedForwardLayer) ((LastTimeStep) this.fwd).getUnderlying()).getNIn();
} else {
return ((FeedForwardLayer) this.fwd).getNIn();
}
}
public RNNFormat getRNNDataFormat(){
return TimeSeriesUtils.getFormatFromRnnLayer(fwd);
}
@Override
public org.deeplearning4j.nn.api.Layer instantiate(NeuralNetConfiguration conf,
Collection trainingListeners, int layerIndex, INDArray layerParamsView,
boolean initializeParams, DataType networkDataType) {
NeuralNetConfiguration c1 = conf.clone();
NeuralNetConfiguration c2 = conf.clone();
c1.setLayer(fwd);
c2.setLayer(bwd);
INDArray layerParamsReshape = layerParamsView.reshape(layerParamsView.length());
long n = layerParamsView.length() / 2;
INDArray fp = layerParamsReshape.get(interval(0, n));
INDArray bp = layerParamsReshape.get(interval(n, 2 * n));
org.deeplearning4j.nn.api.Layer f = fwd.instantiate(c1, trainingListeners, layerIndex, fp, initializeParams, networkDataType);
org.deeplearning4j.nn.api.Layer b = bwd.instantiate(c2, trainingListeners, layerIndex, bp, initializeParams, networkDataType);
BidirectionalLayer ret = new BidirectionalLayer(conf, f, b, layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public ParamInitializer initializer() {
if (initializer == null) {
initializer = new BidirectionalParamInitializer(this);
}
return initializer;
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
InputType outOrig = fwd.getOutputType(layerIndex, inputType);
if (fwd instanceof LastTimeStep) {
InputType.InputTypeFeedForward ff = (InputType.InputTypeFeedForward) outOrig;
if (mode == Mode.CONCAT) {
return InputType.feedForward(2 * ff.getSize());
} else {
return ff;
}
} else {
InputType.InputTypeRecurrent r = (InputType.InputTypeRecurrent) outOrig;
if (mode == Mode.CONCAT) {
return InputType.recurrent(2 * r.getSize(), getRNNDataFormat());
} else {
return r;
}
}
}
@Override
public void setNIn(InputType inputType, boolean override) {
fwd.setNIn(inputType, override);
bwd.setNIn(inputType, override);
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
return fwd.getPreProcessorForInputType(inputType);
}
@Override
public List getRegularizationByParam(String paramName){
//Strip forward/backward prefix from param name
return fwd.getRegularizationByParam(paramName.substring(1));
}
@Override
public boolean isPretrainParam(String paramName) {
return fwd.isPretrainParam(paramName.substring(1));
}
/**
* Get the updater for the given parameter. Typically the same updater will be used for all updaters, but this is
* not necessarily the case
*
* @param paramName Parameter name
* @return IUpdater for the parameter
*/
public IUpdater getUpdaterByParam(String paramName) {
String sub = paramName.substring(1);
return fwd.getUpdaterByParam(sub);
}
@Override
public GradientNormalization getGradientNormalization() {
return fwd.getGradientNormalization();
}
@Override
public double getGradientNormalizationThreshold() {
return fwd.getGradientNormalizationThreshold();
}
@Override
public void setLayerName(String layerName) {
this.layerName = layerName;
fwd.setLayerName(layerName);
bwd.setLayerName(layerName);
}
@Override
public LayerMemoryReport getMemoryReport(InputType inputType) {
LayerMemoryReport lmr = fwd.getMemoryReport(inputType);
lmr.scale(2); //Double all memory use
return lmr;
}
@AllArgsConstructor
@Getter
@Setter
public static class Builder extends Layer.Builder {
private Mode mode;
private Layer layer;
public void setLayer(Layer layer) {
rnnLayer(layer);
}
public Builder mode(Mode mode) {
this.setMode(mode);
return this;
}
public Builder rnnLayer(Layer layer) {
if (!(layer instanceof BaseRecurrentLayer || layer instanceof LastTimeStep
|| layer instanceof BaseWrapperLayer)) {
throw new IllegalArgumentException("Cannot wrap a non-recurrent layer: "
+ "config must extend BaseRecurrentLayer or LastTimeStep " + "Got class: "
+ layer.getClass());
}
this.setLayer(layer);
return this;
}
@SuppressWarnings("unchecked")
public Bidirectional build() {
return new Bidirectional(this);
}
}
}