All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.conf.layers.recurrent.LastTimeStep Maven / Gradle / Ivy

/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.deeplearning4j.nn.conf.layers.recurrent;

import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.Layer;
import org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer;
import org.deeplearning4j.nn.layers.recurrent.LastTimeStepLayer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;

import java.util.Collection;

public class LastTimeStep extends BaseWrapperLayer {

    private LastTimeStep() {}

    public LastTimeStep(Layer underlying) {
        super(underlying);
        this.layerName = underlying.getLayerName(); // needed for keras import to match names
    }

    public Layer getUnderlying() {
        return underlying;
    }


    @Override
    public org.deeplearning4j.nn.api.Layer instantiate(NeuralNetConfiguration conf,
                                                       Collection trainingListeners, int layerIndex, INDArray layerParamsView,
                                                       boolean initializeParams, DataType networkDataType) {
        NeuralNetConfiguration conf2 = conf.clone();
        conf2.setLayer(((LastTimeStep) conf2.getLayer()).getUnderlying());
        return new LastTimeStepLayer(underlying.instantiate(conf2, trainingListeners, layerIndex, layerParamsView,
                        initializeParams, networkDataType));
    }

    @Override
    public InputType getOutputType(int layerIndex, InputType inputType) {
        if (inputType.getType() != InputType.Type.RNN) {
            throw new IllegalArgumentException("Require RNN input type - got " + inputType);
        }
        InputType outType = underlying.getOutputType(layerIndex, inputType);
        InputType.InputTypeRecurrent r = (InputType.InputTypeRecurrent) outType;
        return InputType.feedForward(r.getSize());
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy