org.deeplearning4j.nn.conf.layers.recurrent.SimpleRnn Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers.recurrent;
import lombok.Data;
import lombok.Getter;
import lombok.NoArgsConstructor;
import lombok.Setter;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.BaseRecurrentLayer;
import org.deeplearning4j.nn.conf.layers.LayerValidation;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.params.SimpleRnnParamInitializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.Collection;
import java.util.Map;
@Data
public class SimpleRnn extends BaseRecurrentLayer {
private boolean hasLayerNorm = false;
protected SimpleRnn(Builder builder) {
super(builder);
this.hasLayerNorm = builder.hasLayerNorm;
}
private SimpleRnn() {
}
@Override
public Layer instantiate(NeuralNetConfiguration conf, Collection trainingListeners,
int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) {
LayerValidation.assertNInNOutSet("SimpleRnn", getLayerName(), layerIndex, getNIn(), getNOut());
org.deeplearning4j.nn.layers.recurrent.SimpleRnn ret =
new org.deeplearning4j.nn.layers.recurrent.SimpleRnn(conf, networkDataType);
ret.setListeners(trainingListeners);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public ParamInitializer initializer() {
return SimpleRnnParamInitializer.getInstance();
}
@Override
public LayerMemoryReport getMemoryReport(InputType inputType) {
return null;
}
public boolean hasLayerNorm(){
return hasLayerNorm;
}
@NoArgsConstructor
@Getter
@Setter
public static class Builder extends BaseRecurrentLayer.Builder {
@Override
public SimpleRnn build() {
return new SimpleRnn(this);
}
/**
* If true (default = false): enable layer normalization on this layer
*
*/
private boolean hasLayerNorm = false;
public Builder hasLayerNorm(boolean hasLayerNorm){
this.hasLayerNorm = hasLayerNorm;
return this;
}
}
}