org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers.samediff;
import lombok.*;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.weights.IWeightInit;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.nd4j.autodiff.samediff.SDVariable;
import org.nd4j.autodiff.samediff.SameDiff;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.common.primitives.Pair;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;
@Data
@EqualsAndHashCode(callSuper = true)
public abstract class SameDiffLayer extends AbstractSameDiffLayer {
protected WeightInit weightInit;
protected Map paramWeightInit;
protected SameDiffLayer(Builder builder) {
super(builder);
this.weightInit = builder.weightInit;
this.paramWeightInit = builder.paramWeightInit;
}
protected SameDiffLayer() {
//No op constructor for Jackson
}
/**
* Define the layer
*
* @param sameDiff SameDiff instance
* @param layerInput Input to the layer
* @param paramTable Parameter table - keys as defined by {@link #defineParameters(SDLayerParams)}
* @param mask Optional, maybe null. Mask to apply if supported
* @return The final layer variable corresponding to the activations/output from the forward pass
*/
public abstract SDVariable defineLayer(SameDiff sameDiff, SDVariable layerInput,
Map paramTable, SDVariable mask);
/**
* @see Layer#feedForwardMaskArray(INDArray, MaskState, int)
*/
public Pair feedForwardMaskArray(INDArray maskArray, MaskState currentMaskState, int minibatchSize){
return new Pair<>(maskArray, currentMaskState);
}
/**
* Validate input arrays to confirm that they fulfill the assumptions of the layer. If they don't, throw an exception.
* @param input input to the layer
*/
public void validateInput(INDArray input){/* no-op */}
//==================================================================================================================
@Override
public Layer instantiate(NeuralNetConfiguration conf,
Collection trainingListeners, int layerIndex, INDArray layerParamsView,
boolean initializeParams, DataType networkDataType) {
org.deeplearning4j.nn.layers.samediff.SameDiffLayer ret =
new org.deeplearning4j.nn.layers.samediff.SameDiffLayer(conf, networkDataType);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@SuppressWarnings("unchecked")
@Getter
@Setter
public static abstract class Builder> extends AbstractSameDiffLayer.Builder {
protected WeightInit weightInit = WeightInit.XAVIER;
protected Map paramWeightInit;
/**
* @param weightInit Weight initialization to use for the layer
*/
public T weightInit(WeightInit weightInit) {
this.setWeightInit(weightInit);
return (T) this;
}
public T weightInit(@NonNull String param, @NonNull IWeightInit weightInit){
if(paramWeightInit == null)
paramWeightInit = new HashMap<>();
paramWeightInit.put(param, weightInit);
return (T) this;
}
}
}