All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.conf.layers.util.MaskLayer Maven / Gradle / Ivy

/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.deeplearning4j.nn.conf.layers.util;

import lombok.NoArgsConstructor;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.NoParamLayer;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.params.EmptyParamInitializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.learning.regularization.Regularization;

import java.util.Collection;
import java.util.List;
import java.util.Map;

@NoArgsConstructor
public class MaskLayer extends NoParamLayer {
    @Override
    public org.deeplearning4j.nn.api.Layer instantiate(NeuralNetConfiguration conf,
                                                       Collection trainingListeners, int layerIndex, INDArray layerParamsView,
                                                       boolean initializeParams, DataType networkDataType) {
        org.deeplearning4j.nn.layers.util.MaskLayer ret = new org.deeplearning4j.nn.layers.util.MaskLayer(conf, networkDataType);
        ret.setIndex(layerIndex);
        ret.setParamsViewArray(layerParamsView);
        Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
        ret.setParamTable(paramTable);
        ret.setConf(conf);
        return ret;
    }

    @Override
    public ParamInitializer initializer() {
        return EmptyParamInitializer.getInstance();
    }

    @Override
    public InputType getOutputType(int layerIndex, InputType inputType) {
        return inputType;
    }

    @Override
    public void setNIn(InputType inputType, boolean override) {
        //No op
    }

    @Override
    public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
        return null; //No op
    }

    @Override
    public List getRegularizationByParam(String paramName) {
        //Not applicable
        return null;
    }

    @Override
    public boolean isPretrainParam(String paramName) {
        return false;
    }

    @Override
    public LayerMemoryReport getMemoryReport(InputType inputType) {
        return new LayerMemoryReport();
    }

    @Override
    public String toString() {
        return "MaskLayer()";
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy