org.deeplearning4j.nn.conf.layers.variational.ReconstructionDistribution Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers.variational;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.shade.jackson.annotation.JsonSubTypes;
import org.nd4j.shade.jackson.annotation.JsonTypeInfo;
import java.io.Serializable;
@JsonTypeInfo(use = JsonTypeInfo.Id.CLASS, include = JsonTypeInfo.As.PROPERTY, property = "@class")
public interface ReconstructionDistribution extends Serializable {
/**
* Does this reconstruction distribution has a standard neural network loss function (such as mean squared error,
* which is deterministic) or is it a standard VAE with a probabilistic reconstruction distribution?
* @return true if the reconstruction distribution has a loss function only (and no probabilistic reconstruction distribution)
*/
boolean hasLossFunction();
/**
* Get the number of distribution parameters for the given input data size.
* For example, a Gaussian distribution has 2 parameters value (mean and log(variance)) for each data value,
* whereas a Bernoulli distribution has only 1 parameter value (probability) for each data value.
*
* @param dataSize Size of the data. i.e., nIn value
* @return Number of distribution parameters for the given reconstruction distribution
*/
int distributionInputSize(int dataSize);
/**
* Calculate the negative log probability (summed or averaged over each example in the minibatch)
*
* @param x Data to be modelled (reconstructions)
* @param preOutDistributionParams Distribution parameters used by this reconstruction distribution (for example,
* mean and log variance values for Gaussian)
* @param average Whether the log probability should be averaged over the minibatch, or simply summed.
* @return Average or sum of negative log probability of the reconstruction given the distribution parameters
*/
double negLogProbability(INDArray x, INDArray preOutDistributionParams, boolean average);
/**
* Calculate the negative log probability for each example individually
*
* @param x Data to be modelled (reconstructions)
* @param preOutDistributionParams Distribution parameters used by this reconstruction distribution (for example,
* mean and log variance values for Gaussian) - before applying activation function
* @return Negative log probability of the reconstruction given the distribution parameters, for each example individually.
* Column vector, shape [numExamples, 1]
*/
INDArray exampleNegLogProbability(INDArray x, INDArray preOutDistributionParams);
/**
* Calculate the gradient of the negative log probability with respect to the preOutDistributionParams
*
* @param x Data
* @param preOutDistributionParams Distribution parameters used by this reconstruction distribution (for example,
* mean and log variance values for Gaussian) - before applying activation function
* @return Gradient with respect to the preOutDistributionParams
*/
INDArray gradient(INDArray x, INDArray preOutDistributionParams);
/**
* Randomly sample from P(x|z) using the specified distribution parameters
*
* @param preOutDistributionParams Distribution parameters used by this reconstruction distribution (for example,
* mean and log variance values for Gaussian) - before applying activation function
* @return A random sample of x given the distribution parameters
*/
INDArray generateRandom(INDArray preOutDistributionParams);
/**
* Generate a sample from P(x|z), where x = E[P(x|z)]
* i.e., return the mean value for the distribution
*
* @param preOutDistributionParams Distribution parameters used by this reconstruction distribution (for example,
* mean and log variance values for Gaussian) - before applying activation function
* @return A deterministic sample of x (mean/expected value) given the distribution parameters
*/
INDArray generateAtMean(INDArray preOutDistributionParams);
}