org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.conf.layers.wrapper;
import lombok.Data;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.GradientNormalization;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.Layer;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.params.WrapperLayerParamInitializer;
import org.nd4j.linalg.learning.regularization.Regularization;
import java.util.List;
@Data
public abstract class BaseWrapperLayer extends Layer {
protected Layer underlying;
protected BaseWrapperLayer(Builder builder) {
super(builder);
}
protected BaseWrapperLayer() {}
public BaseWrapperLayer(Layer underlying) {
this.underlying = underlying;
}
@Override
public ParamInitializer initializer() {
return WrapperLayerParamInitializer.getInstance();
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
return underlying.getOutputType(layerIndex, inputType);
}
@Override
public void setNIn(InputType inputType, boolean override) {
underlying.setNIn(inputType, override);
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
return underlying.getPreProcessorForInputType(inputType);
}
@Override
public List getRegularizationByParam(String paramName){
return underlying.getRegularizationByParam(paramName);
}
@Override
public GradientNormalization getGradientNormalization() {
return underlying.getGradientNormalization();
}
@Override
public double getGradientNormalizationThreshold() {
return underlying.getGradientNormalizationThreshold();
}
@Override
public boolean isPretrainParam(String paramName) {
return underlying.isPretrainParam(paramName);
}
@Override
public LayerMemoryReport getMemoryReport(InputType inputType) {
return underlying.getMemoryReport(inputType);
}
@Override
public void setLayerName(String layerName) {
super.setLayerName(layerName);
if (underlying != null) {
//May be null at some points during JSON deserialization
underlying.setLayerName(layerName);
}
}
}