Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.deeplearning4j.nn.graph.vertex.impl.ElementWiseVertex Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.graph.vertex.impl;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.graph.vertex.BaseGraphVertex;
import org.deeplearning4j.nn.graph.vertex.VertexIndices;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.memory.MemoryWorkspace;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.CustomOp;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.nd4j.linalg.api.ops.impl.broadcast.BroadcastTo;
import org.nd4j.linalg.api.ops.impl.transforms.bool.MatchConditionTransform;
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.arithmetic.SubOp;
import org.nd4j.linalg.api.ops.impl.transforms.pairwise.bool.Or;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.conditions.Conditions;
import org.nd4j.linalg.ops.transforms.Transforms;
import org.nd4j.common.primitives.Pair;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import java.util.Arrays;
public class ElementWiseVertex extends BaseGraphVertex {
public enum Op {
Add, Subtract, Product, Average, Max
}
private Op op;
private int nInForwardPass;
public ElementWiseVertex(ComputationGraph graph, String name, int vertexIndex, Op op, DataType dataType) {
this(graph, name, vertexIndex, null, null, op, dataType);
}
public ElementWiseVertex(ComputationGraph graph, String name, int vertexIndex, VertexIndices[] inputVertices,
VertexIndices[] outputVertices, Op op, DataType dataType) {
super(graph, name, vertexIndex, inputVertices, outputVertices, dataType);
this.op = op;
}
@Override
public boolean hasLayer() {
return false;
}
@Override
public Layer getLayer() {
return null;
}
@Override
public INDArray doForward(boolean training, LayerWorkspaceMgr workspaceMgr) {
if (!canDoForward())
throw new IllegalStateException("Cannot do forward pass: inputs not set");
nInForwardPass = inputs.length;
if (inputs.length == 1)
return workspaceMgr.dup(ArrayType.ACTIVATIONS, inputs[0]);
boolean isBc = false;
for(int i = 1; i < inputs.length; i++) {
if(!inputs[0].equalShapes(inputs[i])) {
isBc = true;
break;
}
}
long[] outShape;
if(!isBc) {
outShape = inputs[0].shape();
} else {
outShape = Shape.broadcastOutputShape(inputs[0].shape(), inputs[1].shape());
for( int i = 2; i < inputs.length; i++) {
outShape = Shape.broadcastOutputShape(outShape, inputs[i].shape());
}
}
switch (op) {
case Add:
INDArray sum = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, dataType, outShape);
if(isBc && !Arrays.equals(outShape, inputs[0].shape())) {
Nd4j.exec(new BroadcastTo(inputs[0], outShape, sum));
} else {
sum.assign(inputs[0]);
}
for (int i = 1; i < inputs.length; i++) {
sum.addi(inputs[i].castTo(dataType));
}
return sum;
case Average:
INDArray average = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, dataType, outShape);
if(isBc && !Arrays.equals(outShape, inputs[0].shape())){
Nd4j.exec(new BroadcastTo(inputs[0], outShape, average));
} else {
average.assign(inputs[0]);
}
for (int i = 1; i < inputs.length; i++) {
average.addi(inputs[i].castTo(dataType));
}
return average.divi(inputs.length);
case Subtract:
if (inputs.length != 2)
throw new IllegalArgumentException("ElementWise subtraction only supports 2 inputs");
return Nd4j.exec(new SubOp(inputs, new INDArray[]{workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, inputs[0].dataType(), outShape)}))[0];
case Product:
INDArray product = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, dataType, outShape);
if(isBc && !Arrays.equals(outShape, inputs[0].shape())) {
Nd4j.exec(new BroadcastTo(inputs[0], outShape, product));
} else {
product.assign(inputs[0]);
}
for (int i = 1; i < inputs.length; i++) {
product.muli(inputs[i].castTo(dataType));
}
return product;
case Max:
boolean isBroadcast = false;
for(int i=1; i doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr) {
if (!canDoBackward())
throw new IllegalStateException("Cannot do backward pass: errors not set");
if (nInForwardPass == 1)
return new Pair<>(null, new INDArray[] {workspaceMgr.dup(ArrayType.ACTIVATION_GRAD, epsilon)});
boolean broadcastCase = false;
for( int i=1; i input 0 backprops epsilon, input 1 backprops epsilon.sum(1,keepDim=true)
if(inputs[i].equalShapes(epsilon)){
out[i] = workspaceMgr.dup(ArrayType.ACTIVATION_GRAD, epsilon);
} else {
int[] bcDim = Shape.getBroadcastDimensions(inputs[i].shape(), epsilon.shape());
try(MemoryWorkspace ws = workspaceMgr.notifyScopeBorrowed(ArrayType.ACTIVATION_GRAD)){
out[i] = epsilon.sum(true, bcDim);
}
}
}
}
return new Pair<>(null, out);
case Average:
INDArray[] outAverage = new INDArray[nInForwardPass];
try(MemoryWorkspace ws = workspaceMgr.notifyScopeBorrowed(ArrayType.ACTIVATION_GRAD)){
for (int i = 0; i < nInForwardPass; i++) {
if(inputs[i].equalShapes(epsilon)){
outAverage[i] = epsilon.div(nInForwardPass);
} else {
int[] bcDim = Shape.getBroadcastDimensions(inputs[i].shape(), epsilon.shape());
outAverage[i] = epsilon.div(nInForwardPass).sum(true, bcDim);
}
}
}
return new Pair<>(null, outAverage);
case Subtract:
INDArray[] out2 = new INDArray[2];
if(!broadcastCase){
out2[0] = workspaceMgr.dup(ArrayType.ACTIVATION_GRAD, epsilon);
out2[1] = workspaceMgr.dup(ArrayType.ACTIVATION_GRAD, epsilon).negi();
} else {
if(inputs[0].equalShapes(epsilon)){
//Second input is smaller/broadcast
out2[0] = workspaceMgr.dup(ArrayType.ACTIVATION_GRAD, epsilon);
int[] bcDim = Shape.getBroadcastDimensions(inputs[1].shape(), epsilon.shape());
try(MemoryWorkspace ws = workspaceMgr.notifyScopeBorrowed(ArrayType.ACTIVATION_GRAD)) {
out2[1] = epsilon.sum(true, bcDim).negi();
}
} else {
//First input is smaller/broadcast
int[] bcDim = Shape.getBroadcastDimensions(inputs[0].shape(), epsilon.shape());
try(MemoryWorkspace ws = workspaceMgr.notifyScopeBorrowed(ArrayType.ACTIVATION_GRAD)) {
out2[0] = epsilon.sum(true, bcDim);
}
out2[1] = workspaceMgr.dup(ArrayType.ACTIVATION_GRAD, epsilon).negi();
}
}
return new Pair<>(null, out2);
case Product:
INDArray[] out_product = new INDArray[nInForwardPass];
INDArray[] inBc = inputs;
if(broadcastCase){
inBc = new INDArray[inputs.length];
for( int i=0; i(null, out_product);
case Max:
INDArray[] outMax = new INDArray[nInForwardPass];
INDArray maxIndices = workspaceMgr.createUninitialized(ArrayType.BP_WORKING_MEM, DataType.INT, epsilon.shape(), epsilon.ordering());
INDArray[] bcIn = inputs;
if(broadcastCase){
//Broadcast to right shape...
bcIn = new INDArray[inputs.length];
for( int i=0; i(null, outMax);
default:
throw new UnsupportedOperationException("Unknown op: " + this.op);
}
}
@Override
public void setBackpropGradientsViewArray(INDArray backpropGradientsViewArray) {
if (backpropGradientsViewArray != null)
throw new RuntimeException("Vertex does not have gradients; gradients view array cannot be set here");
}
@Override
public Pair feedForwardMaskArrays(INDArray[] maskArrays, MaskState currentMaskState,
int minibatchSize) {
if (maskArrays == null) {
return new Pair<>(null, currentMaskState);
}
//Most common case: all or none.
//If there's only *some* mask arrays: assume the others (missing) are equivalent to all 1s
//And for handling multiple masks: best strategy seems to be an OR operation
//i.e., output is 1 if any of the input are 1s
//Which means: if any masks are missing, output null (equivalent to no mask, or all steps present)
//Otherwise do an element-wise OR operation
for (INDArray arr : maskArrays) {
if (arr == null) {
return new Pair<>(null, currentMaskState);
}
}
//At this point: all present. Do OR operation
if (maskArrays.length == 1) {
return new Pair<>(maskArrays[0], currentMaskState);
} else {
INDArray ret = Nd4j.createUninitialized(DataType.BOOL, maskArrays[0].shape()); //maskArrays[0].dup(maskArrays[0].ordering());
Nd4j.getExecutioner().exec(new Or(maskArrays[0].castTo(DataType.BOOL), maskArrays[1].castTo(DataType.BOOL), ret));
for (int i = 2; i < maskArrays.length; i++) {
Nd4j.getExecutioner().exec(new Or(maskArrays[i].castTo(DataType.BOOL), ret, ret));
}
return new Pair<>(ret.castTo(Nd4j.defaultFloatingPointType()), currentMaskState);
}
}
@Override
public String toString() {
return "ElementWiseVertex(id=" + this.getVertexIndex() + ",name=\"" + this.getVertexName() + "\",op=" + op
+ ")";
}
}