Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.graph.vertex.impl;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.graph.vertex.BaseGraphVertex;
import org.deeplearning4j.nn.graph.vertex.VertexIndices;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.common.primitives.Pair;
public class ReshapeVertex extends BaseGraphVertex {
private char order;
private int[] newShape;
private int[] maskShape;
public ReshapeVertex(ComputationGraph graph, String name, int vertexIndex, char order, int[] newShape, int[] maskShape, DataType dataType) {
this(graph, name, vertexIndex, null, null, order, newShape, maskShape, dataType);
}
public ReshapeVertex(ComputationGraph graph, String name, int vertexIndex, VertexIndices[] inputVertices,
VertexIndices[] outputVertices, char order, int[] newShape, int[] maskShape, DataType dataType) {
super(graph, name, vertexIndex, inputVertices, outputVertices, dataType);
this.order = order;
this.newShape = newShape;
this.maskShape = maskShape;
}
@Override
public boolean hasLayer() {
return false;
}
@Override
public Layer getLayer() {
return null;
}
@Override
public INDArray doForward(boolean training, LayerWorkspaceMgr workspaceMgr) {
if (!canDoForward())
throw new IllegalStateException("Cannot do forward pass: inputs not set");
if (inputs.length > 1)
throw new IllegalStateException("Reshape vertex requires a single input.");
return workspaceMgr.dup(ArrayType.ACTIVATIONS, inputs[0].reshape(order, newShape));
}
@Override
public Pair doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr) {
if (!canDoBackward())
throw new IllegalStateException("Cannot do backward pass: errors not set");
INDArray[] out = new INDArray[1];
out[0] = workspaceMgr.dup(ArrayType.ACTIVATION_GRAD, epsilon.reshape(order, inputs[0].shape()));
return new Pair<>(null, out);
}
@Override
public void setBackpropGradientsViewArray(INDArray backpropGradientsViewArray) {
if (backpropGradientsViewArray != null)
throw new RuntimeException("Vertex does not have gradients; gradients view array cannot be set here");
}
@Override
public Pair feedForwardMaskArrays(INDArray[] maskArrays, MaskState currentMaskState,
int minibatchSize) {
if (maskArrays == null || maskArrays.length < 1 || maskArrays[0] == null) {
return new Pair<>(null, currentMaskState);
}
if(maskShape != null){
return new Pair<>(maskArrays[0].reshape(order, maskShape), currentMaskState);
}
//Mask array is an input mask. Therefore: 2 possible cases
//(a) column vector mask (MLP, CNN), and
// i. output is rank 2 or 4 (MLP, CNN) -> no change
// ii. output is rank 3 (RNN) -> to 2d
//(b) 2d mask (RNN), and
// i. output is rank 2 or 4 (MLP, CNN) -> mask to column vector
// ii. output is rank 3 (RNN) -> no change
if(maskArrays[0].isColumnVectorOrScalar()){
if(newShape.length == 2 || newShape.length == 4){
return new Pair<>(maskArrays[0], currentMaskState);
} else if(newShape.length == 3) {
//Column vector -> 2d (FF -> RNN etc)
int[] newMaskShape = new int[]{newShape[0], newShape[2]};
return new Pair<>(maskArrays[0].reshape(order, newMaskShape), currentMaskState);
}
} else {
if(newShape.length == 3){
return new Pair<>(maskArrays[0], currentMaskState);
} else {
//RNN -> FF/CNN
int[] newMaskShape = new int[]{newShape[0]*newShape[2], 1};
return new Pair<>(maskArrays[0].reshape(order, newMaskShape), currentMaskState);
}
}
//Other unknown case - shouldn't happen...
return new Pair<>(maskArrays[0], currentMaskState);
}
@Override
public String toString() {
return "ReshapeVertex(id=" + this.getVertexIndex() + ",name=\"" + this.getVertexName() + "\",shape="
+ newShape.toString() + ")";
}
}