Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.graph.vertex.impl;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.graph.vertex.BaseGraphVertex;
import org.deeplearning4j.nn.graph.vertex.VertexIndices;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;
import org.nd4j.common.primitives.Pair;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import java.util.Arrays;
public class UnstackVertex extends BaseGraphVertex {
private long from;
private int stackSize;
private long forwardShape[];
private long step;
public UnstackVertex(ComputationGraph graph, String name, int vertexIndex, int from, int stackSize, DataType dataType) {
this(graph, name, vertexIndex, null, null, from, stackSize, dataType);
}
public UnstackVertex(ComputationGraph graph, String name, int vertexIndex, VertexIndices[] inputVertices,
VertexIndices[] outputVertices, int from, int stackSize, DataType dataType) {
super(graph, name, vertexIndex, inputVertices, outputVertices, dataType);
this.from = from;
this.stackSize = stackSize;
}
@Override
public boolean hasLayer() {
return false;
}
@Override
public Layer getLayer() {
return null;
}
@Override
public INDArray doForward(boolean training, LayerWorkspaceMgr workspaceMgr) {
if (!canDoForward())
throw new IllegalStateException("Cannot do forward pass: input not set");
// once we know the inputs, save the shape and interval size for doBackward
this.forwardShape = Arrays.copyOf(inputs[0].shape(), inputs[0].rank());
this.step = inputs[0].size(0) / stackSize;
long start = from * step;
long end = (from + 1) * step;
INDArray ret;
switch (inputs[0].rank()) { //TODO remove the dups here if/when possible (gradient checks must pass)
case 2:
ret = inputs[0].get(NDArrayIndex.interval(start, end), NDArrayIndex.all());
break;
case 3:
ret = inputs[0].get(NDArrayIndex.interval(start, end), NDArrayIndex.all(), NDArrayIndex.all());
break;
case 4:
ret = inputs[0].get(NDArrayIndex.interval(start, end), NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.all());
break;
default:
throw new UnsupportedOperationException(
"Cannot get subset for activations of rank " + inputs[0].rank());
}
return workspaceMgr.dup(ArrayType.ACTIVATIONS, ret);
}
@Override
public Pair doBackward(boolean tbptt, LayerWorkspaceMgr workspaceMgr) {
if (!canDoBackward())
throw new IllegalStateException("Cannot do backward pass: error not set");
INDArray out = workspaceMgr.create(ArrayType.ACTIVATION_GRAD, inputs[0].dataType(), forwardShape);
long start = from * step;
long end = (from + 1) * step;
switch (forwardShape.length) {
case 2:
out.put(new INDArrayIndex[] {NDArrayIndex.interval(start, end), NDArrayIndex.all()}, epsilon);
break;
case 3:
out.put(new INDArrayIndex[] {NDArrayIndex.interval(start, end), NDArrayIndex.all(), NDArrayIndex.all()},
epsilon);
break;
case 4:
out.put(new INDArrayIndex[] {NDArrayIndex.interval(start, end), NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.all()}, epsilon);
break;
default:
throw new RuntimeException("Invalid activation rank"); //Should never happen
}
return new Pair<>(null, new INDArray[] {out});
}
@Override
public void setBackpropGradientsViewArray(INDArray backpropGradientsViewArray) {
if (backpropGradientsViewArray != null)
throw new RuntimeException("Vertex does not have gradients; gradients view array cannot be set here");
}
@Override
public Pair feedForwardMaskArrays(INDArray[] maskArrays, MaskState currentMaskState,
int minibatchSize) {
if (maskArrays == null || maskArrays.length == 0) {
return new Pair<>(null, currentMaskState);
}
boolean allNull = true;
for (int i = 0; i < maskArrays.length; i++) {
if (maskArrays[i] != null) {
allNull = false;
break;
}
}
if (allNull) {
return new Pair<>(null, currentMaskState);
}
//Mask arrays are either 1d (column vector) or 2d...
long start = from * minibatchSize;
long end = (from + 1) * minibatchSize;
INDArray outMask = maskArrays[0].get(NDArrayIndex.interval(start, end), NDArrayIndex.all());
return new Pair<>(outMask, currentMaskState);
}
@Override
public String toString() {
return "UnstackVertex(id=" + this.getVertexIndex() + ",name=\"" + this.getVertexName() + "\",fromIdx=" + from
+ ",forwardShape=" + forwardShape + ")";
}
}