Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.layers.convolution;
import lombok.Getter;
import lombok.Setter;
import lombok.val;
import org.deeplearning4j.eval.Evaluation;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.api.layers.IOutputLayer;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.BaseLayer;
import org.deeplearning4j.util.ConvolutionUtils;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.api.DataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.common.primitives.Pair;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.deeplearning4j.nn.workspace.ArrayType;
import java.util.Arrays;
import java.util.List;
public class CnnLossLayer extends BaseLayer implements IOutputLayer {
@Setter
@Getter
protected INDArray labels;
public CnnLossLayer(NeuralNetConfiguration conf, DataType dataType) {
super(conf, dataType);
}
@Override
public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(true);
if (input.rank() != 4)
throw new UnsupportedOperationException(
"Input is not rank 4. Got input with rank " + input.rank() + " " + layerId() + " with shape "
+ Arrays.toString(input.shape()) + " - expected shape " + layerConf().getFormat().dimensionNames());
if (labels == null)
throw new IllegalStateException("Labels are not set (null)");
Preconditions.checkState(input.equalShapes(labels), "Input and label arrays do not have same shape: %ndShape vs. %ndShape",input, labels);
CNN2DFormat format = layerConf().getFormat();
INDArray input2d = ConvolutionUtils.reshape4dTo2d(input, format, workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray labels2d = ConvolutionUtils.reshape4dTo2d(labels, format, workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray maskReshaped = ConvolutionUtils.reshapeMaskIfRequired(maskArray, input, format, workspaceMgr, ArrayType.FF_WORKING_MEM);
// delta calculation
ILossFunction lossFunction = layerConf().getLossFn();
INDArray delta2d = lossFunction.computeGradient(labels2d, input2d.dup(input2d.ordering()), layerConf().getActivationFn(), maskReshaped);
delta2d = workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, delta2d);
INDArray delta4d = ConvolutionUtils.reshape2dTo4d(delta2d, input.shape(), format, workspaceMgr, ArrayType.ACTIVATION_GRAD);
// grab the empty gradient
Gradient gradient = new DefaultGradient();
return new Pair<>(gradient, delta4d);
}
@Override
public double calcRegularizationScore(boolean backpropParamsOnly){
return 0;
}
@Override
public double f1Score(DataSet data) {
return 0;
}
/**
* {@inheritDoc}
*/
@Override
public double f1Score(INDArray examples, INDArray labels) {
INDArray out = activate(examples, false, null); //TODO
Evaluation eval = new Evaluation();
eval.evalTimeSeries(labels, out, maskArray);
return eval.f1();
}
@Override
public int numLabels() {
return (int) labels.size(1);
}
@Override
public void fit(DataSetIterator iter) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public int[] predict(INDArray examples) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public List predict(DataSet dataSet) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public void fit(INDArray examples, INDArray labels) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public void fit(DataSet data) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public void fit(INDArray examples, int[] labels) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public Type type() {
return Type.CONVOLUTIONAL;
}
@Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
if (input.rank() != 4)
throw new UnsupportedOperationException(
"Input must be rank 4 with shape " + layerConf().getFormat().dimensionNames() +
". Got input with rank " + input.rank() + " " + layerId());
CNN2DFormat format = layerConf().getFormat();
INDArray in = workspaceMgr.dup(ArrayType.ACTIVATIONS, input, input.ordering());
INDArray input2d = ConvolutionUtils.reshape4dTo2d(in, format, workspaceMgr, ArrayType.ACTIVATIONS);
INDArray out2d = layerConf().getActivationFn().getActivation(input2d, training);
return ConvolutionUtils.reshape2dTo4d(out2d, input.shape(), format, workspaceMgr, ArrayType.ACTIVATIONS);
}
@Override
public void setMaskArray(INDArray maskArray) {
this.maskArray = maskArray;
}
@Override
public boolean isPretrainLayer() {
return false;
}
@Override
public Pair feedForwardMaskArray(INDArray maskArray, MaskState currentMaskState,
int minibatchSize) {
this.maskArray = maskArray;
return null; //Last layer in network
}
@Override
public boolean needsLabels() {
return true;
}
@Override
public double computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr) {
INDArray input2d = ConvolutionUtils.reshape4dTo2d(input, workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray labels2d = ConvolutionUtils.reshape4dTo2d(labels, workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray maskReshaped = ConvolutionUtils.reshapeMaskIfRequired(maskArray, input, layerConf().getFormat(), workspaceMgr, ArrayType.FF_WORKING_MEM);
ILossFunction lossFunction = layerConf().getLossFn();
double score = lossFunction.computeScore(labels2d, input2d.dup(), layerConf().getActivationFn(), maskReshaped, false);
score /= getInputMiniBatchSize();
score += fullNetRegTerm;
this.score = score;
return score;
}
/**
* Compute the score for each example individually, after labels and input have been set.
*
* @param fullNetRegTerm Regularization score term for the entire network (or, 0.0 to not include regularization)
* @return A column INDArray of shape [numExamples,1], where entry i is the score of the ith example
*/
@Override
public INDArray computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr) {
//For CNN: need to sum up the score over each x/y location before returning
if (input == null || labels == null)
throw new IllegalStateException("Cannot calculate score without input and labels " + layerId());
CNN2DFormat format = layerConf().getFormat();
INDArray input2d = ConvolutionUtils.reshape4dTo2d(input, format, workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray labels2d = ConvolutionUtils.reshape4dTo2d(labels, format, workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray maskReshaped = ConvolutionUtils.reshapeMaskIfRequired(maskArray, input, format, workspaceMgr, ArrayType.FF_WORKING_MEM);
ILossFunction lossFunction = layerConf().getLossFn();
INDArray scoreArray =
lossFunction.computeScoreArray(labels2d, input2d, layerConf().getActivationFn(), maskReshaped);
//scoreArray: shape [minibatch*h*w, 1]
//Reshape it to [minibatch, 1, h, w] then sum over x/y to give [minibatch, 1]
val newShape = input.shape().clone();
newShape[1] = 1;
INDArray scoreArrayTs = ConvolutionUtils.reshape2dTo4d(scoreArray, newShape, format, workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray summedScores = scoreArrayTs.sum(1,2,3).reshape(scoreArrayTs.size(0), 1);
if (fullNetRegTerm != 0.0) {
summedScores.addi(fullNetRegTerm);
}
return workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, summedScores);
}
}