Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.layers.convolution;
import lombok.Getter;
import lombok.Setter;
import lombok.extern.slf4j.Slf4j;
import org.deeplearning4j.exception.DL4JInvalidInputException;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.CacheMode;
import org.deeplearning4j.nn.conf.ConvolutionMode;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.BaseLayer;
import org.deeplearning4j.nn.layers.HelperUtils;
import org.deeplearning4j.nn.layers.LayerHelper;
import org.deeplearning4j.nn.layers.mkldnn.MKLDNNConvHelper;
import org.deeplearning4j.nn.params.ConvolutionParamInitializer;
import org.deeplearning4j.util.ConvolutionUtils;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.memory.MemoryWorkspace;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.linalg.convolution.Convolution;
import org.nd4j.linalg.exception.ND4JArraySizeException;
import org.nd4j.linalg.exception.ND4JOpProfilerException;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.common.primitives.Pair;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.deeplearning4j.nn.workspace.ArrayType;
import java.util.Arrays;
@Slf4j
public class ConvolutionLayer extends BaseLayer {
protected INDArray i2d;
protected ConvolutionHelper helper = null;
protected int helperCountFail = 0;
@Getter
@Setter
protected ConvolutionMode convolutionMode;
protected transient INDArray dummyBias; //Used only when: hasBias == false AND helpers are used
protected transient INDArray dummyBiasGrad; //As above
public final static String CUDA_CNN_HELPER_CLASS_NAME = "org.deeplearning4j.cuda.convolution.CudnnConvolutionHelper";
public ConvolutionLayer(NeuralNetConfiguration conf, DataType dataType) {
super(conf, dataType);
initializeHelper();
convolutionMode = ((org.deeplearning4j.nn.conf.layers.ConvolutionLayer) conf().getLayer()).getConvolutionMode();
}
void initializeHelper() {
helper = HelperUtils.createHelper(CUDA_CNN_HELPER_CLASS_NAME,
MKLDNNConvHelper.class.getName(),
ConvolutionHelper.class, layerConf().getLayerName(), dataType
);
}
@Override
public Type type() {
return Type.CONVOLUTIONAL;
}
@Override
public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(true);
INDArray weights = getParamWithNoise(ConvolutionParamInitializer.WEIGHT_KEY, true, workspaceMgr);
INDArray bias = getParamWithNoise(ConvolutionParamInitializer.BIAS_KEY, true, workspaceMgr);
INDArray input = this.input.castTo(dataType); //No op if correct type
if(epsilon.dataType() != dataType)
epsilon = epsilon.castTo(dataType);
INDArray origInput = input;
INDArray origEps = epsilon;
if(layerConf().getCnn2dDataFormat() != CNN2DFormat.NCHW) {
input = input.permute(0,3,1,2); //NHWC to NCHW
epsilon = epsilon.permute(0,3,1,2); //NHWC to NCHW
}
long miniBatch = input.size(0);
int inH = (int) input.size(2);
int inW = (int) input.size(3);
long outDepth = weights.size(0);
long inDepth = weights.size(1);
int kH = (int) weights.size(2);
int kW = (int) weights.size(3);
int[] dilation = layerConf().getDilation();
int[] kernel = layerConf().getKernelSize();
int[] strides = layerConf().getStride();
int[] pad;
int[] outSize;
if (convolutionMode == ConvolutionMode.Same) {
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation, CNN2DFormat.NCHW); //Also performs validation
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {inH, inW}, kernel, strides, dilation);
} else {
pad = layerConf().getPadding();
outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation, CNN2DFormat.NCHW); //Also performs validation
}
int outH = outSize[0];
int outW = outSize[1];
INDArray biasGradView = gradientViews.get(ConvolutionParamInitializer.BIAS_KEY);
INDArray weightGradView = gradientViews.get(ConvolutionParamInitializer.WEIGHT_KEY); //4d, c order. Shape: [outDepth,inDepth,kH,kW]
INDArray weightGradView2df = Shape
.newShapeNoCopy(weightGradView, new long[]{outDepth, inDepth * kH * kW}, false).transpose();
INDArray delta;
IActivation afn = layerConf().getActivationFn();
Pair p = preOutput4d(true, true, workspaceMgr);
INDArray z = p.getFirst();
CNN2DFormat f = layerConf().getCnn2dDataFormat();
if(f != CNN2DFormat.NCHW){
z = z.permute(0,3,1,2); //NHWC to NCHW
}
delta = afn.backprop(z, epsilon).getFirst(); //TODO handle activation function params
if (helper != null && (helperCountFail == 0 || !layerConf().isCudnnAllowFallback())) {
INDArray helperDelta = delta;
if(layerConf().getCnn2dDataFormat() == CNN2DFormat.NHWC)
helperDelta = delta.permute(0,2,3,1); //NCHW to NHWC
if(!hasBias() && !(helper instanceof MKLDNNConvHelper)){
//MKL-DNN supports no bias, CuDNN doesn't
if(dummyBiasGrad == null){
try (MemoryWorkspace wsO = Nd4j.getMemoryManager().scopeOutOfWorkspaces()) {
dummyBiasGrad = Nd4j.create(1, layerConf().getNOut());
}
}
biasGradView = dummyBiasGrad;
}
Pair ret = null;
try {
ret = helper.backpropGradient(origInput, weights, bias, helperDelta, kernel, strides,
pad, biasGradView, weightGradView, afn,
layerConf().getCudnnAlgoMode(), layerConf().getCudnnBwdFilterAlgo(), layerConf().getCudnnBwdDataAlgo(),
convolutionMode, dilation, layerConf().getCnn2dDataFormat(), workspaceMgr);
} catch (ND4JOpProfilerException e){
throw e; //NaN panic etc for debugging
} catch (Exception e){
if(e.getMessage().contains("Failed to allocate")){
//This is a memory exception - don't fallback to built-in implementation
throw e;
}
if(layerConf().isCudnnAllowFallback()){
helperCountFail++;
if(helper instanceof MKLDNNConvHelper){
log.warn("MKL-DNN execution failed - falling back on built-in implementation",e);
} else {
log.warn("CuDNN execution failed - falling back on built-in implementation",e);
}
} else {
throw new RuntimeException("Error during ConvolutionLayer MKL/CuDNN helper backprop - isCudnnAllowFallback() is set to false", e);
}
}
if (ret != null) {
//Backprop dropout, if present
INDArray gradPostDropout = ret.getRight();
gradPostDropout = backpropDropOutIfPresent(gradPostDropout);
ret.setSecond(gradPostDropout);
return ret;
}
}
delta = delta.permute(1, 0, 2, 3); //To shape: [outDepth,miniBatch,outH,outW]
//Note: due to the permute in preOut, and the fact that we essentially do a preOut.muli(epsilon), this reshape
// should be zero-copy; only possible exception being sometimes with the "identity" activation case
INDArray delta2d = delta.reshape('c', new long[] {outDepth, miniBatch * outH * outW}); //Shape.newShapeNoCopy(delta,new int[]{outDepth,miniBatch*outH*outW},false);
//Do im2col, but with order [miniB,outH,outW,depthIn,kH,kW]; but need to input [miniBatch,channels,kH,kW,outH,outW] given the current im2col implementation
//To get this: create an array of the order we want, permute it to the order required by im2col implementation, and then do im2col on that
//to get old order from required order: permute(0,3,4,5,1,2)
INDArray im2col2d = p.getSecond(); //Re-use im2col2d array from forward pass if available; recalculate if not
if (im2col2d == null) {
INDArray col = Nd4j.createUninitialized(dataType, new long[] {miniBatch, outH, outW, inDepth, kH, kW}, 'c');
INDArray col2 = col.permute(0, 3, 4, 5, 1, 2);
Convolution.im2col(input, kH, kW, strides[0], strides[1], pad[0], pad[1], dilation[0], dilation[1],
convolutionMode == ConvolutionMode.Same, col2);
//Shape im2col to 2d. Due to the permuting above, this should be a zero-copy reshape
im2col2d = col.reshape('c', miniBatch * outH * outW, inDepth * kH * kW);
}
//Calculate weight gradients, using cc->c mmul.
//weightGradView2df is f order, but this is because it's transposed from c order
//Here, we are using the fact that AB = (B^T A^T)^T; output here (post transpose) is in c order, not usual f order
Nd4j.gemm(im2col2d, delta2d, weightGradView2df, true, true, 1.0, 0.0);
//Flatten 4d weights to 2d... this again is a zero-copy op (unless weights are not originally in c order for some reason)
INDArray wPermuted = weights.permute(3, 2, 1, 0); //Start with c order weights, switch order to f order
INDArray w2d = wPermuted.reshape('f', inDepth * kH * kW, outDepth);
//Calculate epsilons for layer below, in 2d format (note: this is in 'image patch' format before col2im reduction)
//Note: cc -> f mmul here, then reshape to 6d in f order
INDArray epsNext2d = w2d.mmul(delta2d); //TODO can we reuse im2col array instead of allocating new result array?
INDArray eps6d = Shape.newShapeNoCopy(epsNext2d, new long[] {kW, kH, inDepth, outW, outH, miniBatch}, true);
//Calculate epsilonNext by doing im2col reduction.
//Current col2im implementation expects input with order: [miniBatch,channels,kH,kW,outH,outW]
//currently have [kH,kW,inDepth,outW,outH,miniBatch] -> permute first
eps6d = eps6d.permute(5, 2, 1, 0, 4, 3);
INDArray epsNextOrig = workspaceMgr.createUninitialized(ArrayType.ACTIVATION_GRAD, eps6d.dataType(), new long[] {inDepth, miniBatch, inH, inW}, 'c');
//Note: we are execute col2im in a way that the output array should be used in a stride 1 muli in the layer below... (same strides as zs/activations)
INDArray epsNext = epsNextOrig.permute(1, 0, 2, 3);
Convolution.col2im(eps6d, epsNext, strides[0], strides[1], pad[0], pad[1], inH, inW, dilation[0], dilation[1]);
Gradient retGradient = new DefaultGradient();
if(layerConf().hasBias()){
delta2d.sum(biasGradView, 1); //biasGradView is initialized/zeroed first in sum op
retGradient.setGradientFor(ConvolutionParamInitializer.BIAS_KEY, biasGradView);
}
retGradient.setGradientFor(ConvolutionParamInitializer.WEIGHT_KEY, weightGradView, 'c');
weightNoiseParams.clear();
epsNext = backpropDropOutIfPresent(epsNext);
if(layerConf().getCnn2dDataFormat() != CNN2DFormat.NCHW){
epsNext = epsNext.permute(0,2,3,1); //NCHW to NHWC
}
return new Pair<>(retGradient, epsNext);
}
/**
* preOutput4d: Used so that ConvolutionLayer subclasses (such as Convolution1DLayer) can maintain their standard
* non-4d preOutput method, while overriding this to return 4d activations (for use in backprop) without modifying
* the public API
*/
protected Pair preOutput4d(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr) {
return preOutput(training, forBackprop, workspaceMgr);
}
protected void validateInputRank() {
//Input validation: expect rank 4 matrix
if (input.rank() != 4) {
String layerName = conf.getLayer().getLayerName();
if (layerName == null)
layerName = "(not named)";
throw new DL4JInvalidInputException("Got rank " + input.rank()
+ " array as input to ConvolutionLayer (layer name = " + layerName + ", layer index = "
+ index + ") with shape " + Arrays.toString(input.shape()) + ". "
+ "Expected rank 4 array with shape [minibatchSize, layerInputDepth, inputHeight, inputWidth]."
+ (input.rank() == 2
? " (Wrong input type (see InputType.convolutionalFlat()) or wrong data type?)"
: "")
+ " " + layerId());
}
}
protected void validateInputDepth(long inDepth) {
CNN2DFormat format = layerConf().getCnn2dDataFormat();
int dim = format == CNN2DFormat.NHWC ? 3 : 1;
if (input.size(dim) != inDepth) {
String layerName = conf.getLayer().getLayerName();
if (layerName == null)
layerName = "(not named)";
String s = "Cannot do forward pass in Convolution layer (layer name = " + layerName
+ ", layer index = " + index + "): input array channels does not match CNN layer configuration"
+ " (data format = " + format + ", data input channels = " + input.size(dim) + ", " + layerConf().getCnn2dDataFormat().dimensionNames()
+ "=" + Arrays.toString(input.shape()) + "; expected" + " input channels = " + inDepth + ") "
+ layerId();
int dimIfWrongFormat = format == CNN2DFormat.NHWC ? 1 : 3;
if(input.size(dimIfWrongFormat) == inDepth){
//User might have passed NCHW data to a NHWC net, or vice versa?
s += "\n" + ConvolutionUtils.NCHW_NHWC_ERROR_MSG;
}
throw new DL4JInvalidInputException(s);
}
}
/**
* PreOutput method that also returns the im2col2d array (if being called for backprop), as this can be re-used
* instead of being calculated again.
*
* @param training Train or test time (impacts dropout)
* @param forBackprop If true: return the im2col2d array for re-use during backprop. False: return null for second
* pair entry. Note that it may still be null in the case of CuDNN and the like.
* @return Pair of arrays: preOutput (activations) and optionally the im2col2d array
*/
protected Pair preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
INDArray bias = getParamWithNoise(ConvolutionParamInitializer.BIAS_KEY, training, workspaceMgr);
INDArray weights = getParamWithNoise(ConvolutionParamInitializer.WEIGHT_KEY, training, workspaceMgr);
validateInputRank();
INDArray input = this.input.castTo(dataType);
INDArray inputOrig = input;
if(layerConf().getCnn2dDataFormat() == CNN2DFormat.NHWC) {
input = input.permute(0,3,1,2).dup(); //NHWC to NCHW
}
long miniBatch = input.size(0);
long outDepth = weights.size(0);
long inDepth = weights.size(1);
validateInputDepth(inDepth);
long kH = weights.size(2);
long kW = weights.size(3);
int[] dilation = layerConf().getDilation();
int[] kernel = layerConf().getKernelSize();
int[] strides = layerConf().getStride();
int[] pad;
int[] outSize;
if (convolutionMode == ConvolutionMode.Same) {
outSize = ConvolutionUtils.getOutputSize(
input,
kernel,
strides,
null,
convolutionMode,
dilation,
CNN2DFormat.NCHW); //Note: hardcoded to NCHW due to permute earlier in this method
if (input.size(2) > Integer.MAX_VALUE || input.size(3) > Integer.MAX_VALUE)
throw new ND4JArraySizeException();
int[] inWidthHeight;
// if(layerConf().getCnn2dDataFormat() == CNN2DFormat.NCHW)
//TODO: Switch hardcoded state later. For now, convolution is implemented as
//switch to NCHW then permute back for NWHC
inWidthHeight = new int[] {(int) input.size(2), (int) input.size(3)};
/* else if(layerConf().getCnn2dDataFormat() == CNN2DFormat.NHWC) {
inWidthHeight = new int[] {(int) input.size(1), (int) input.size(2)};
}
else
throw new IllegalStateException("No data format configured!");*/
pad = ConvolutionUtils.getSameModeTopLeftPadding(
outSize,
inWidthHeight,
kernel,
strides,
dilation);
} else {
pad = layerConf().getPadding();
outSize = ConvolutionUtils.getOutputSize(
input,
kernel,
strides,
pad,
convolutionMode,
dilation,
CNN2DFormat.NCHW); //Note: hardcoded to NCHW due to permute earlier in this method
}
int outH = outSize[0];
int outW = outSize[1];
if (helper != null && (helperCountFail == 0 || !layerConf().isCudnnAllowFallback())) {
if (preOutput != null && forBackprop) {
return new Pair<>(preOutput, null);
}
//For no-bias convolutional layers: use an empty (all 0s) value for biases
if(!hasBias()){
if(dummyBias == null){
try (MemoryWorkspace wsO = Nd4j.getMemoryManager().scopeOutOfWorkspaces()) {
dummyBias = Nd4j.create(1, layerConf().getNOut());
}
}
bias = dummyBias;
}
INDArray ret = null;
try {
ret = helper.preOutput(inputOrig, weights, bias, kernel, strides, pad, layerConf().getCudnnAlgoMode(),
layerConf().getCudnnFwdAlgo(), convolutionMode, dilation, layerConf().getCnn2dDataFormat(), workspaceMgr);
} catch (ND4JOpProfilerException e){
throw e; //NaN panic etc for debugging
} catch (Exception e){
if(e.getMessage() != null && e.getMessage().contains("Failed to allocate")){
//This is a memory exception - don't fallback to built-in implementation
throw e;
}
if(layerConf().isCudnnAllowFallback()) {
helperCountFail++;
if(helper instanceof MKLDNNConvHelper) {
log.warn("MKL-DNN execution failed - falling back on built-in implementation",e);
} else {
log.warn("CuDNN execution failed - falling back on built-in implementation",e);
}
} else {
throw new RuntimeException("Error during ConvolutionLayer MKL/CuDNN helper forward pass - isCudnnAllowFallback() is set to false", e);
}
}
if (ret != null) {
return new Pair<>(ret, null);
}
}
if (preOutput != null && i2d != null && forBackprop) {
return new Pair<>(preOutput, i2d);
}
//im2col in the required order: want [outW,outH,miniBatch,depthIn,kH,kW], but need to input [miniBatch,channels,kH,kW,outH,outW] given the current im2col implementation
//To get this: create an array of the order we want, permute it to the order required by im2col implementation, and then do im2col on that
//to get old order from required order: permute(0,3,4,5,1,2)
//Post reshaping: rows are such that minibatch varies slowest, outW fastest as we step through the rows post-reshape
INDArray col = Nd4j.createUninitialized(weights.dataType(), new long[] {miniBatch, outH, outW, inDepth, kH, kW}, 'c');
int[] permute = new int[]{0, 3, 4, 5, 1, 2};
INDArray col2 = col.permute(permute);
INDArray im2ColIn = input.castTo(col2.dataType()); //No op if already (for example) float
if (kH > Integer.MAX_VALUE || kW > Integer.MAX_VALUE)
throw new ND4JArraySizeException();
Convolution.im2col(
im2ColIn,
(int)kH,
(int)kW,
strides[0], strides[1],
pad[0], pad[1],
dilation[0], dilation[1],
convolutionMode == ConvolutionMode.Same,
col2);
INDArray im2col2d = Shape.newShapeNoCopy(col, new long[] {miniBatch * outH * outW, inDepth * kH * kW}, false);
//Current order of weights: [depthOut,depthIn,kH,kW], c order
//Permute to give [kW,kH,depthIn,depthOut], f order
//Reshape to give [kW*kH*depthIn, depthOut]. This should always be zero-copy reshape, unless weights aren't in c order for some reason
INDArray permutedW = weights.permute(3, 2, 1, 0);
INDArray reshapedW = permutedW.reshape('f', kW * kH * inDepth, outDepth);
//Do the MMUL; c and f orders in, f order out. output shape: [miniBatch*outH*outW,depthOut]
INDArray z = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, weights.dataType(), new long[]{im2col2d.size(0), reshapedW.size(1)}, 'f');
im2col2d.mmuli(reshapedW, z);
//Add biases, before reshaping. Note that biases are [1,depthOut] and currently z is [miniBatch*outH*outW,depthOut] -> addiRowVector
if(layerConf().hasBias()){
z.addiRowVector(bias);
}
//Now, reshape to [outW,outH,miniBatch,outDepth], and permute to have correct output order: [miniBatch,outDepth,outH,outW];
z = Shape.newShapeNoCopy(z, new long[] {outW, outH, miniBatch, outDepth}, true);
z = z.permute(2, 3, 1, 0);
if (training && cacheMode != CacheMode.NONE && workspaceMgr.hasConfiguration(ArrayType.FF_CACHE) && workspaceMgr.isWorkspaceOpen(ArrayType.FF_CACHE)) {
try (MemoryWorkspace wsB = workspaceMgr.notifyScopeBorrowed(ArrayType.FF_CACHE)) {
i2d = im2col2d.unsafeDuplication();
}
}
if(layerConf().getCnn2dDataFormat() == CNN2DFormat.NHWC) {
z = z.permute(0,2,3,1); //NCHW to NHWC
z = workspaceMgr.dup(ArrayType.ACTIVATIONS, z);
}
return new Pair<>(z, forBackprop ? im2col2d : null);
}
@Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
if (input == null) {
throw new IllegalArgumentException("Cannot perform forward pass with null input " + layerId());
}
if (cacheMode == null)
cacheMode = CacheMode.NONE;
applyDropOutIfNecessary(training, workspaceMgr);
INDArray z = preOutput(training, false, workspaceMgr).getFirst();
// we do cache only if cache workspace exists. Skip otherwise
if (training && cacheMode != CacheMode.NONE && workspaceMgr.hasConfiguration(ArrayType.FF_CACHE) && workspaceMgr.isWorkspaceOpen(ArrayType.FF_CACHE)) {
try (MemoryWorkspace wsB = workspaceMgr.notifyScopeBorrowed(ArrayType.FF_CACHE)) {
preOutput = z.unsafeDuplication();
}
}
//String afn = conf.getLayer().getActivationFunction();
IActivation afn = layerConf().getActivationFn();
if (helper != null && Shape.strideDescendingCAscendingF(z) && (helperCountFail == 0 || !layerConf().isCudnnAllowFallback())) {
INDArray ret = null;
try {
ret = helper.activate(z, layerConf().getActivationFn(), training);
} catch (ND4JOpProfilerException e){
throw e; //NaN panic etc for debugging
} catch (Exception e) {
if (e.getMessage() != null && e.getMessage().contains("Failed to allocate")) {
//This is a memory exception - don't fallback to built-in implementation
throw e;
}
if (layerConf().isCudnnAllowFallback()) {
helperCountFail++;
if (helper instanceof MKLDNNConvHelper) {
log.warn("MKL-DNN execution failed - falling back on built-in implementation", e);
} else {
log.warn("CuDNN execution failed - falling back on built-in implementation", e);
}
} else {
throw new RuntimeException("Error during ConvolutionLayer MKL/CuDNN helper forward pass - isCudnnAllowFallback() is set to false", e);
}
}
if (ret != null) {
return ret;
}
}
INDArray activation = afn.getActivation(z, training);
return activation;
}
@Override
public boolean hasBias() {
return layerConf().hasBias();
}
@Override
public boolean isPretrainLayer() {
return false;
}
@Override
public LayerHelper getHelper() {
return helper;
}
@Override
public void fit(INDArray input, LayerWorkspaceMgr workspaceMgr) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public void setParams(INDArray params) {
//Override, as base layer does f order parameter flattening by default
setParams(params, 'c');
}
@Override
public Pair feedForwardMaskArray(INDArray maskArray, MaskState currentMaskState, int minibatchSize) {
if (maskArray == null) {
//For same mode (with stride 1): output activations size is always same size as input activations size -> mask array is same size
return new Pair<>(maskArray, currentMaskState);
}
INDArray outMask = ConvolutionUtils.cnn2dMaskReduction(maskArray, layerConf().getKernelSize(), layerConf().getStride(),
layerConf().getPadding(), layerConf().getDilation(), layerConf().getConvolutionMode());
return new Pair<>(outMask, currentMaskState);
}
}