org.deeplearning4j.nn.layers.convolution.Cropping1DLayer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.layers.convolution;
import lombok.val;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.convolutional.Cropping1D;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.AbstractLayer;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.memory.MemoryWorkspace;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.common.primitives.Pair;
import static org.nd4j.linalg.indexing.NDArrayIndex.all;
import static org.nd4j.linalg.indexing.NDArrayIndex.interval;
public class Cropping1DLayer extends AbstractLayer {
private int[] cropping; //[padTop, padBottom]
public Cropping1DLayer(NeuralNetConfiguration conf, DataType dataType) {
super(conf, dataType);
this.cropping = ((Cropping1D) conf.getLayer()).getCropping();
}
@Override
public boolean isPretrainLayer() {
return false;
}
@Override
public void clearNoiseWeightParams() {
//No op
}
@Override
public Type type() {
return Type.CONVOLUTIONAL;
}
@Override
public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
val inShape = input.shape();
INDArray epsNext = workspaceMgr.create(ArrayType.ACTIVATION_GRAD, dataType, inShape, 'c');
INDArray epsNextSubset = epsNext.get(all(), all(), interval(cropping[0], epsNext.size(2)-cropping[1]));
epsNextSubset.assign(epsilon);
return new Pair<>((Gradient) new DefaultGradient(), epsNext);
}
@Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
return inputSubset(input, ArrayType.ACTIVATIONS, workspaceMgr);
}
@Override
public Layer clone() {
return new Cropping2DLayer(conf.clone(), dataType);
}
@Override
public double calcRegularizationScore(boolean backpropParamsOnly){
return 0.0;
}
private INDArray inputSubset(INDArray from, ArrayType arrayType, LayerWorkspaceMgr workspaceMgr){
try(MemoryWorkspace ws = workspaceMgr.notifyScopeBorrowed(arrayType)){
if(from.dataType() == dataType){
return from.get(all(), all(), interval(cropping[0], from.size(2)-cropping[1])).dup(from.ordering());
} else {
return from.get(all(), all(), interval(cropping[0], from.size(2)-cropping[1])).castTo(dataType);
}
}
}
}