org.deeplearning4j.nn.layers.convolution.Cropping2DLayer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.layers.convolution;
import lombok.val;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.AbstractLayer;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.common.primitives.Pair;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.deeplearning4j.nn.workspace.ArrayType;
import static org.nd4j.linalg.indexing.NDArrayIndex.all;
import static org.nd4j.linalg.indexing.NDArrayIndex.interval;
public class Cropping2DLayer extends AbstractLayer {
private int[] cropping; //[padTop, padBottom, padLeft, padRight]
public Cropping2DLayer(NeuralNetConfiguration conf, DataType dataType) {
super(conf, dataType);
this.cropping = ((org.deeplearning4j.nn.conf.layers.convolutional.Cropping2D) conf.getLayer()).getCropping();
}
@Override
public boolean isPretrainLayer() {
return false;
}
@Override
public void clearNoiseWeightParams() {
//No op
}
@Override
public Type type() {
return Type.CONVOLUTIONAL;
}
@Override
public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
val inShape = input.shape();
INDArray epsNext = workspaceMgr.create(ArrayType.ACTIVATION_GRAD, input.dataType(), inShape, 'c');
INDArray epsNextSubset = inputSubset(epsNext);
epsNextSubset.assign(epsilon);
return new Pair<>((Gradient) new DefaultGradient(), epsNext);
}
@Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
INDArray ret = inputSubset(input);
ret = workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, ret);
workspaceMgr.validateArrayLocation(ArrayType.ACTIVATIONS, ret, false, false);
return ret;
}
@Override
public Layer clone() {
return new Cropping2DLayer(conf.clone(), dataType);
}
@Override
public double calcRegularizationScore(boolean backpropParamsOnly){
return 0;
}
private INDArray inputSubset(INDArray from){
boolean nchw = layerConf().getDataFormat() == CNN2DFormat.NCHW;
if(nchw) {
//NCHW format
return from.get(all(), all(),
interval(cropping[0], from.size(2) - cropping[1]),
interval(cropping[2], from.size(3) - cropping[3]));
} else {
//NHWC
return from.get(all(),
interval(cropping[0], from.size(1) - cropping[1]),
interval(cropping[2], from.size(2) - cropping[3]),
all());
}
}
}