All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.layers.convolution.DepthwiseConvolution2DLayer Maven / Gradle / Ivy

/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.deeplearning4j.nn.layers.convolution;

import lombok.val;
import org.deeplearning4j.exception.DL4JInvalidInputException;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.CacheMode;
import org.deeplearning4j.nn.conf.ConvolutionMode;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.params.DepthwiseConvolutionParamInitializer;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.deeplearning4j.util.ConvolutionUtils;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.CustomOp;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.nd4j.linalg.exception.ND4JArraySizeException;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.common.primitives.Pair;

import java.util.Arrays;

public class DepthwiseConvolution2DLayer extends ConvolutionLayer {

    public DepthwiseConvolution2DLayer(NeuralNetConfiguration conf, DataType dataType) {
        super(conf, dataType);
    }


    @Override
    void initializeHelper() {
        //No op - no separable conv implementation in cudnn
    }


    @Override
    public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
        assertInputSet(true);
        CNN2DFormat format = layerConf().getCnn2dDataFormat();
        boolean nchw = format == CNN2DFormat.NCHW;
        if (input.rank() != 4) {
            throw new DL4JInvalidInputException("Got rank " + input.rank()
                    + " array as input to Convolution layer with shape " + Arrays.toString(input.shape())
                    + ". Expected rank 4 array with shape " + layerConf().getCnn2dDataFormat().dimensionNames() + ". "
                    + layerId());
        }
        INDArray bias;
        INDArray depthWiseWeights =
                getParamWithNoise(DepthwiseConvolutionParamInitializer.WEIGHT_KEY, true, workspaceMgr);

        INDArray input = this.input.castTo(dataType);   //No-op if correct type

        long miniBatch = input.size(0);
        int inH = (int)input.size(nchw ? 2 : 1);
        int inW = (int)input.size(nchw ? 3 : 2);

        long inDepth = depthWiseWeights.size(2);
        int kH = (int) depthWiseWeights.size(0);
        int kW = (int) depthWiseWeights.size(1);

        int[] dilation = layerConf().getDilation();
        int[] kernel = layerConf().getKernelSize();
        int[] strides = layerConf().getStride();
        int[] pad;
        if (convolutionMode == ConvolutionMode.Same) {
            int[] outSize = ConvolutionUtils.getOutputSize(
                    input, kernel, strides, null, convolutionMode, dilation, format);
            pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[]{inH, inW}, kernel, strides, dilation);
        } else {
            pad = layerConf().getPadding();
            ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation, format);
        }

        INDArray biasGradView = gradientViews.get(DepthwiseConvolutionParamInitializer.BIAS_KEY);
        INDArray weightGradView = gradientViews.get(DepthwiseConvolutionParamInitializer.WEIGHT_KEY);

        long[] epsShape = nchw ? new long[]{miniBatch, inDepth, inH, inW} : new long[]{miniBatch, inH, inW, inDepth};
        INDArray outEpsilon = workspaceMgr.create(ArrayType.ACTIVATION_GRAD, depthWiseWeights.dataType(), epsShape, 'c');

        int sameMode = (convolutionMode == ConvolutionMode.Same) ? 1 : 0;

        int[] args = new int[]{
                kH, kW, strides[0], strides[1],
                pad[0], pad[1], dilation[0], dilation[1],
                sameMode, (nchw ? 0 : 1)
        };

        INDArray delta;
        IActivation afn = layerConf().getActivationFn();
        Pair p = preOutput4d(true, true, workspaceMgr);
        delta = afn.backprop(p.getFirst(), epsilon).getFirst();

        INDArray[] inputs;
        INDArray[] outputs;
        if (layerConf().hasBias()) {
            bias = getParamWithNoise(DepthwiseConvolutionParamInitializer.BIAS_KEY, true, workspaceMgr);
            inputs = new INDArray[]{input, depthWiseWeights, bias, delta};
            outputs = new INDArray[]{outEpsilon, weightGradView, biasGradView};
        } else {
            inputs = new INDArray[]{input, depthWiseWeights, delta};
            outputs = new INDArray[]{outEpsilon, weightGradView};
        }

        CustomOp op = DynamicCustomOp.builder("depthwise_conv2d_bp")
                .addInputs(inputs)
                .addIntegerArguments(args)
                .addOutputs(outputs)
                .callInplace(false)
                .build();
        Nd4j.getExecutioner().exec(op);

        Gradient retGradient = new DefaultGradient();
        if (layerConf().hasBias()) {
            retGradient.setGradientFor(DepthwiseConvolutionParamInitializer.BIAS_KEY, biasGradView);
        }
        retGradient.setGradientFor(DepthwiseConvolutionParamInitializer.WEIGHT_KEY, weightGradView, 'c');

        weightNoiseParams.clear();

        outEpsilon = backpropDropOutIfPresent(outEpsilon);
        return new Pair<>(retGradient, outEpsilon);
    }

    @Override
    protected Pair preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr) {
        assertInputSet(false);
        INDArray bias = getParamWithNoise(DepthwiseConvolutionParamInitializer.BIAS_KEY, training, workspaceMgr);
        INDArray depthWiseWeights =
                getParamWithNoise(DepthwiseConvolutionParamInitializer.WEIGHT_KEY, training, workspaceMgr);

        if (input.rank() != 4) {
            String layerName = conf.getLayer().getLayerName();
            if (layerName == null)
                layerName = "(not named)";
            throw new DL4JInvalidInputException("Got rank " + input.rank()
                    + " array as input to DepthwiseConvolution2D (layer name = " + layerName + ", layer index = "
                    + index + ") with shape " + Arrays.toString(input.shape()) + ". "
                    + "Expected rank 4 array with shape " + layerConf().getCnn2dDataFormat().dimensionNames() + "."
                    + (input.rank() == 2
                    ? " (Wrong input type (see InputType.convolutionalFlat()) or wrong data type?)"
                    : "") + " " + layerId());
        }

        INDArray input = this.input.castTo(dataType);   //no-op if correct dtype

        CNN2DFormat format = layerConf().getCnn2dDataFormat();
        boolean nchw = format == CNN2DFormat.NCHW;

        long inDepth = depthWiseWeights.size(2);
        long depthMultiplier = depthWiseWeights.size(3);
        long outDepth = depthMultiplier * inDepth;

        if (input.size(nchw ? 1 : 3) != inDepth) {
            String layerName = conf.getLayer().getLayerName();
            if (layerName == null)
                layerName = "(not named)";

            String s = "Cannot do forward pass in DepthwiseConvolution2D layer " +
                    "(layer name = " + layerName
                    + ", layer index = " + index + "): input array channels does not match CNN layer configuration"
                    + " (data format = " + format + ", data input channels = " + input.size(1) + ", "
                    + (nchw ? "[minibatch,inputDepth,height,width]=" : "[minibatch,height,width,inputDepth]=")
                    + Arrays.toString(input.shape()) + "; expected" + " input channels = " + inDepth + ") "
                    + layerId();
            int dimIfWrongFormat = format == CNN2DFormat.NHWC ? 1 : 3;
            if(input.size(dimIfWrongFormat) == inDepth){
                //User might have passed NCHW data to a NHWC net, or vice versa?
                s += "\n" + ConvolutionUtils.NCHW_NHWC_ERROR_MSG;
            }

            throw new DL4JInvalidInputException(s);
        }
        int kH = (int) depthWiseWeights.size(0);
        int kW = (int) depthWiseWeights.size(1);

        int[] dilation = layerConf().getDilation();
        int[] kernel = layerConf().getKernelSize();
        int[] strides = layerConf().getStride();

        int[] pad;
        int[] outSize;
        if (convolutionMode == ConvolutionMode.Same) {
            outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation, format);

            if (input.size(2) > Integer.MAX_VALUE || input.size(3) > Integer.MAX_VALUE) {
                throw new ND4JArraySizeException();
            }
            pad = ConvolutionUtils.getSameModeTopLeftPadding(
                    outSize, new int[]{(int) input.size(nchw ? 2 : 1), (int) input.size(nchw ? 3 : 2)}, kernel, strides, dilation);
        } else {
            pad = layerConf().getPadding();
            outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation, format);
        }

        long outH = outSize[0];
        long outW = outSize[1];

        val miniBatch = input.size(0);
        long[] outShape = nchw ? new long[]{miniBatch, outDepth, outH, outW} : new long[]{miniBatch, outH, outW, outDepth};
        INDArray output = workspaceMgr.create(ArrayType.ACTIVATIONS, depthWiseWeights.dataType(), outShape, 'c');

        int sameMode = (convolutionMode == ConvolutionMode.Same) ? 1 : 0;

        int[] args = new int[]{
                kH, kW, strides[0], strides[1],
                pad[0], pad[1], dilation[0], dilation[1], sameMode, (nchw ? 0 : 1)
        };

        INDArray[] inputs;
        if (layerConf().hasBias()) {
            inputs = new INDArray[]{input, depthWiseWeights, bias};
        } else {
            inputs = new INDArray[]{input, depthWiseWeights};

        }
        CustomOp op = DynamicCustomOp.builder("depthwise_conv2d")
                .addInputs(inputs)
                .addIntegerArguments(args)
                .addOutputs(output)
                .callInplace(false)
                .build();
        Nd4j.getExecutioner().exec(op);

        return new Pair<>(output, null);
    }

    @Override
    public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
        assertInputSet(false);

        if (cacheMode == null)
            cacheMode = CacheMode.NONE;

        applyDropOutIfNecessary(training, workspaceMgr);

        INDArray z = preOutput(training, false, workspaceMgr).getFirst();

        //String afn = conf.getLayer().getActivationFunction();
        IActivation afn = layerConf().getActivationFn();

        INDArray activation = afn.getActivation(z, training);
        return activation;
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy