Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.deeplearning4j.nn.layers.convolution.SeparableConvolution2DLayer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.layers.convolution;
import lombok.val;
import org.deeplearning4j.exception.DL4JInvalidInputException;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.CacheMode;
import org.deeplearning4j.nn.conf.ConvolutionMode;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.params.ConvolutionParamInitializer;
import org.deeplearning4j.nn.params.SeparableConvolutionParamInitializer;
import org.deeplearning4j.util.ConvolutionUtils;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.CustomOp;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.nd4j.linalg.exception.ND4JArraySizeException;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.common.primitives.Pair;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.deeplearning4j.nn.workspace.ArrayType;
import java.util.Arrays;
public class SeparableConvolution2DLayer extends ConvolutionLayer {
public SeparableConvolution2DLayer(NeuralNetConfiguration conf, DataType dataType) {
super(conf, dataType);
}
@Override
void initializeHelper(){
//No op - no separable conv implementation in cudnn
}
@Override
public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(true);
if (input.rank() != 4) {
throw new DL4JInvalidInputException("Got rank " + input.rank()
+ " array as input to SubsamplingLayer with shape " + Arrays.toString(input.shape())
+ ". Expected rank 4 array with shape " + layerConf().getCnn2dDataFormat().dimensionNames() + ". "
+ layerId());
}
INDArray bias;
INDArray depthWiseWeights =
getParamWithNoise(SeparableConvolutionParamInitializer.DEPTH_WISE_WEIGHT_KEY, true, workspaceMgr);
INDArray pointWiseWeights =
getParamWithNoise(SeparableConvolutionParamInitializer.POINT_WISE_WEIGHT_KEY, true, workspaceMgr);
INDArray input = this.input.castTo(dataType);
CNN2DFormat format = layerConf().getCnn2dDataFormat();
boolean nchw = format == CNN2DFormat.NCHW;
long miniBatch = input.size(0);
int inH = (int)input.size(nchw ? 2 : 1);
int inW = (int)input.size(nchw ? 3 : 2);
int inDepth = (int) depthWiseWeights.size(1);
int kH = (int) depthWiseWeights.size(2);
int kW = (int) depthWiseWeights.size(3);
int[] dilation = layerConf().getDilation();
int[] kernel = layerConf().getKernelSize();
int[] strides = layerConf().getStride();
int[] pad;
if (convolutionMode == ConvolutionMode.Same) {
int[] outSize = ConvolutionUtils.getOutputSize(input, kernel, strides, null, convolutionMode, dilation, format); //Also performs validation
pad = ConvolutionUtils.getSameModeTopLeftPadding(outSize, new int[] {inH, inW}, kernel, strides, dilation);
} else {
pad = layerConf().getPadding();
ConvolutionUtils.getOutputSize(input, kernel, strides, pad, convolutionMode, dilation, format); //Also performs validation
}
INDArray biasGradView = gradientViews.get(SeparableConvolutionParamInitializer.BIAS_KEY);
INDArray depthWiseWeightGradView = gradientViews.get(SeparableConvolutionParamInitializer.DEPTH_WISE_WEIGHT_KEY);
INDArray pointWiseWeightGradView = gradientViews.get(SeparableConvolutionParamInitializer.POINT_WISE_WEIGHT_KEY);
long[] epsShape = nchw ? new long[]{miniBatch, inDepth, inH, inW} : new long[]{miniBatch, inH, inW, inDepth};
INDArray outEpsilon = workspaceMgr.create(ArrayType.ACTIVATION_GRAD, depthWiseWeights.dataType(), epsShape, 'c');
int sameMode = (convolutionMode == ConvolutionMode.Same) ? 1 : 0;
int[] args = new int[] {
kH, kW, strides[0], strides[1],
pad[0], pad[1], dilation[0], dilation[1], sameMode,
nchw ? 0 : 1
};
INDArray delta;
IActivation afn = layerConf().getActivationFn();
Pair p = preOutput4d(true, true, workspaceMgr);
delta = afn.backprop(p.getFirst(), epsilon).getFirst();
//dl4j weights: depth [depthMultiplier, nIn, kH, kW], point [nOut, nIn * depthMultiplier, 1, 1]
//libnd4j weights: depth [kH, kW, iC, mC], point [1, 1, iC*mC, oC]
depthWiseWeights = depthWiseWeights.permute(2, 3, 1, 0);
pointWiseWeights = pointWiseWeights.permute(2, 3, 1, 0);
INDArray opDepthWiseWeightGradView = depthWiseWeightGradView.permute(2, 3, 1, 0);
INDArray opPointWiseWeightGradView = pointWiseWeightGradView.permute(2, 3, 1, 0);
CustomOp op;
if(layerConf().hasBias()){
bias = getParamWithNoise(SeparableConvolutionParamInitializer.BIAS_KEY, true, workspaceMgr);
op = DynamicCustomOp.builder("sconv2d_bp")
.addInputs(input, delta, depthWiseWeights, pointWiseWeights, bias)
.addIntegerArguments(args)
.addOutputs(outEpsilon, opDepthWiseWeightGradView, opPointWiseWeightGradView, biasGradView)
.callInplace(false)
.build();
} else {
op = DynamicCustomOp.builder("sconv2d_bp")
.addInputs(input, delta, depthWiseWeights, pointWiseWeights)
.addIntegerArguments(args)
.addOutputs(outEpsilon, opDepthWiseWeightGradView, opPointWiseWeightGradView)
.callInplace(false)
.build();
}
Nd4j.getExecutioner().exec(op);
Gradient retGradient = new DefaultGradient();
if(layerConf().hasBias()){
retGradient.setGradientFor(ConvolutionParamInitializer.BIAS_KEY, biasGradView);
}
retGradient.setGradientFor(SeparableConvolutionParamInitializer.DEPTH_WISE_WEIGHT_KEY, depthWiseWeightGradView, 'c');
retGradient.setGradientFor(SeparableConvolutionParamInitializer.POINT_WISE_WEIGHT_KEY, pointWiseWeightGradView, 'c');
weightNoiseParams.clear();
outEpsilon = backpropDropOutIfPresent(outEpsilon);
return new Pair<>(retGradient, outEpsilon);
}
@Override
protected Pair preOutput(boolean training , boolean forBackprop, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
INDArray bias = getParamWithNoise(SeparableConvolutionParamInitializer.BIAS_KEY, training, workspaceMgr);
INDArray depthWiseWeights =
getParamWithNoise(SeparableConvolutionParamInitializer.DEPTH_WISE_WEIGHT_KEY, training, workspaceMgr);
INDArray pointWiseWeights =
getParamWithNoise(SeparableConvolutionParamInitializer.POINT_WISE_WEIGHT_KEY, training, workspaceMgr);
INDArray input = this.input.castTo(dataType);
if(layerConf().getCnn2dDataFormat() == CNN2DFormat.NHWC) {
input = input.permute(0,3,1,2).dup();
}
int chIdx = 1;
int hIdx = 2;
int wIdx = 3;
if (input.rank() != 4) {
String layerName = conf.getLayer().getLayerName();
if (layerName == null)
layerName = "(not named)";
throw new DL4JInvalidInputException("Got rank " + input.rank()
+ " array as input to SeparableConvolution2D (layer name = " + layerName + ", layer index = "
+ index + ") with shape " + Arrays.toString(input.shape()) + ". "
+ "Expected rank 4 array with shape " + layerConf().getCnn2dDataFormat().dimensionNames() + "."
+ (input.rank() == 2
? " (Wrong input type (see InputType.convolutionalFlat()) or wrong data type?)"
: "")
+ " " + layerId());
}
long inDepth = depthWiseWeights.size(1);
long outDepth = pointWiseWeights.size(0);
if (input.size(chIdx) != inDepth) {
String layerName = conf.getLayer().getLayerName();
if (layerName == null)
layerName = "(not named)";
String s = "Cannot do forward pass in SeparableConvolution2D layer (layer name = " + layerName
+ ", layer index = " + index + "): input array channels does not match CNN layer configuration"
+ " (data format = " + layerConf().getCnn2dDataFormat() + ", data input channels = " + input.size(1) + ", [minibatch,inputDepth,height,width]="
+ Arrays.toString(input.shape()) + "; expected" + " input channels = " + inDepth + ") "
+ layerId();
int dimIfWrongFormat = 1;
if(input.size(dimIfWrongFormat) == inDepth){
//User might have passed NCHW data to a NHWC net, or vice versa?
s += "\n" + ConvolutionUtils.NCHW_NHWC_ERROR_MSG;
}
throw new DL4JInvalidInputException(s);
}
int kH = (int) depthWiseWeights.size(2);
int kW = (int) depthWiseWeights.size(3);
int[] dilation = layerConf().getDilation();
int[] kernel = layerConf().getKernelSize();
int[] strides = layerConf().getStride();
int[] pad;
int[] outSize;
if (convolutionMode == ConvolutionMode.Same) {
outSize = ConvolutionUtils.getOutputSize(
input,
kernel,
strides,
null,
convolutionMode,
dilation,
CNN2DFormat.NCHW); //Also performs validation, note: hardcoded due to above permute
if (input.size(2) > Integer.MAX_VALUE || input.size(3) > Integer.MAX_VALUE) {
throw new ND4JArraySizeException();
}
pad = ConvolutionUtils.getSameModeTopLeftPadding(
outSize,
new int[] {(int) input.size(hIdx), (int) input.size(wIdx)},
kernel,
strides,
dilation);
} else {
pad = layerConf().getPadding();
outSize = ConvolutionUtils.getOutputSize(
input,
kernel,
strides,
pad,
convolutionMode,
dilation,
CNN2DFormat.NCHW); //Also performs validation, note hardcoded due to permute above
}
int outH = outSize[0];
int outW = outSize[1];
val miniBatch = input.size(0);
long[] outShape = new long[]{miniBatch, outDepth, outH, outW};
INDArray output = workspaceMgr.create(ArrayType.ACTIVATIONS, depthWiseWeights.dataType(), outShape, 'c');
Integer sameMode = (convolutionMode == ConvolutionMode.Same) ? 1 : 0;
int[] args = new int[] {
kH, kW, strides[0], strides[1],
pad[0], pad[1], dilation[0], dilation[1], sameMode,
0
};
//dl4j weights: depth [depthMultiplier, nIn, kH, kW], point [nOut, nIn * depthMultiplier, 1, 1]
//libnd4j weights: depth [kH, kW, iC, mC], point [1, 1, iC*mC, oC]
depthWiseWeights = depthWiseWeights.permute(2, 3, 1, 0);
pointWiseWeights = pointWiseWeights.permute(2, 3, 1, 0);
INDArray[] opInputs;
if (layerConf().hasBias()) {
opInputs = new INDArray[]{input, depthWiseWeights, pointWiseWeights, bias};
} else {
opInputs = new INDArray[]{input, depthWiseWeights, pointWiseWeights};
}
CustomOp op = DynamicCustomOp.builder("sconv2d")
.addInputs(opInputs)
.addIntegerArguments(args)
.addOutputs(output)
.callInplace(false)
.build();
Nd4j.getExecutioner().exec(op);
if(layerConf().getCnn2dDataFormat() == CNN2DFormat.NHWC) {
output = output.permute(0,2,3,1); //NCHW to NHWC
}
return new Pair<>(output, null);
}
@Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
if (cacheMode == null)
cacheMode = CacheMode.NONE;
applyDropOutIfNecessary(training, workspaceMgr);
INDArray z = preOutput(training, false, workspaceMgr).getFirst();
//String afn = conf.getLayer().getActivationFunction();
IActivation afn = layerConf().getActivationFn();
INDArray activation = afn.getActivation(z, training);
return activation;
}
}