All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.deeplearning4j.nn.layers.convolution.SpaceToBatch Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.layers.convolution;
import lombok.extern.slf4j.Slf4j;
import org.deeplearning4j.exception.DL4JInvalidInputException;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.AbstractLayer;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.CustomOp;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.common.primitives.Pair;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.deeplearning4j.nn.workspace.ArrayType;
import java.util.Arrays;
@Slf4j
public class SpaceToBatch extends AbstractLayer {
public SpaceToBatch(NeuralNetConfiguration conf, DataType dataType) {
super(conf, dataType);
}
private int[] getBlocks() {
return layerConf().getBlocks();
}
private int[][] getPadding() {
return layerConf().getPadding();
}
private INDArray getBlocksArray() {
int[] intBlocks = layerConf().getBlocks();
return Nd4j.createFromArray(intBlocks);
}
private INDArray getPaddingArray() {
int[][] intPad = layerConf().getPadding();
return Nd4j.createFromArray(intPad);
}
@Override
public Type type() {
return Type.CONVOLUTIONAL;
}
@Override
public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(true);
INDArray input = this.input.castTo(dataType); //Cast to network dtype if required (no-op if already correct type)
boolean nchw = layerConf().getFormat() == CNN2DFormat.NCHW;
INDArray outEpsilon = workspaceMgr.createUninitialized(ArrayType.ACTIVATION_GRAD, input.dataType(), input.shape(), 'c');
Gradient gradient = new DefaultGradient();
INDArray epsilonNHWC = nchw ? epsilon.permute(0, 2, 3, 1) : epsilon;
INDArray outEpsilonNHWC = nchw ? outEpsilon.permute(0, 2, 3, 1) : outEpsilon;
CustomOp op = DynamicCustomOp.builder("batch_to_space_nd")
.addInputs(epsilonNHWC, getBlocksArray(), getPaddingArray())
.addOutputs(outEpsilonNHWC)
.callInplace(false)
.build();
Nd4j.exec(op);
outEpsilon = backpropDropOutIfPresent(outEpsilon);
return new Pair<>(gradient, outEpsilon);
}
protected INDArray preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
applyDropOutIfNecessary(training, null);
if (input.rank() != 4) {
throw new DL4JInvalidInputException("Got rank " + input.rank()
+ " array as input to space to batch with shape " + Arrays.toString(input.shape())
+ ". Expected rank 4 array with shape " + layerConf().getFormat().dimensionNames() + ". "
+ layerId());
}
if (preOutput != null && forBackprop) {
return preOutput;
}
boolean nchw = layerConf().getFormat() == CNN2DFormat.NCHW;
long inMiniBatch = input.size(0);
long depth = input.size(nchw ? 1 : 3);
long inH = input.size(nchw ? 2 : 1);
long inW = input.size(nchw ? 3 : 2);
int[] blocks = getBlocks();
int[][] padding = getPadding();
long paddedH = inH + padding[0][0] + padding[0][1];
long paddedW = inW + padding[1][0] + padding[1][1];
long outH = paddedH / blocks[0];
long outW = paddedW / blocks[1];
long outMiniBatch = inMiniBatch * blocks[0] * blocks[1];
long[] outShape = nchw ? new long[]{outMiniBatch, depth, outH, outW} : new long[]{outMiniBatch, outH, outW, depth};
INDArray out = workspaceMgr.create(ArrayType.ACTIVATIONS, input.dataType(), outShape, 'c');
INDArray inNHWC = nchw ? input.permute(0, 2, 3, 1) : input;
INDArray outNHWC = nchw ? out.permute(0, 2, 3, 1) : out;
CustomOp op = DynamicCustomOp.builder("space_to_batch_nd")
.addInputs(inNHWC, getBlocksArray(), getPaddingArray())
.addOutputs(outNHWC)
.build();
Nd4j.exec(op);
return out;
}
@Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
return preOutput(training, false, workspaceMgr);
}
@Override
public double calcRegularizationScore(boolean backpropParamsOnly){
return 0;
}
@Override
public boolean isPretrainLayer() {
return false;
}
@Override
public void clearNoiseWeightParams() {
//No op
}
@Override
public Gradient gradient() {
throw new UnsupportedOperationException("Not supported - no parameters");
}
@Override
public long numParams() {
return 0;
}
@Override
public double score() {
return 0;
}
@Override
public void update(INDArray gradient, String paramType) {
}
@Override
public INDArray params() {
return null;
}
@Override
public INDArray getParam(String param) {
return params();
}
@Override
public void setParams(INDArray params) {
}
}