All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.deeplearning4j.nn.layers.convolution.SpaceToDepth Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.layers.convolution;
import lombok.extern.slf4j.Slf4j;
import org.deeplearning4j.exception.DL4JInvalidInputException;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.AbstractLayer;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.CustomOp;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.common.primitives.Pair;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.deeplearning4j.nn.workspace.ArrayType;
import java.util.Arrays;
@Slf4j
public class SpaceToDepth extends AbstractLayer {
public SpaceToDepth(NeuralNetConfiguration conf, DataType dataType) {
super(conf, dataType);
}
private int getBlockSize() {
return layerConf().getBlockSize();
}
@Override
public Type type() {
return Type.CONVOLUTIONAL;
}
@Override
public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(true);
INDArray input = this.input.castTo(epsilon.dataType());
boolean nchw = layerConf().getDataFormat() == CNN2DFormat.NCHW;
long miniBatch = input.size(0);
long inDepth = input.size(nchw ? 1 : 3);
long inH = input.size(nchw ? 2 : 1);
long inW = input.size(nchw ? 3 : 2);
long[] epsShape = nchw ? new long[]{miniBatch, inDepth, inH, inW} : new long[]{miniBatch, inH, inW, inDepth};
INDArray outEpsilon = workspaceMgr.create(ArrayType.ACTIVATION_GRAD, input.dataType(), epsShape, 'c');
Gradient gradient = new DefaultGradient();
int blockSize = getBlockSize();
//Workaround for issue: https://github.com/eclipse/deeplearning4j/issues/8859
if(!Shape.hasDefaultStridesForShape(epsilon))
epsilon = epsilon.dup('c');
CustomOp op = DynamicCustomOp.builder("depth_to_space")
.addInputs(epsilon)
.addIntegerArguments(blockSize, nchw ? 0 : 1) //nchw = 0, nhwc = 1
.addOutputs(outEpsilon)
.build();
Nd4j.getExecutioner().exec(op);
return new Pair<>(gradient, outEpsilon);
}
protected INDArray preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
applyDropOutIfNecessary(training, workspaceMgr);
if (input.rank() != 4) {
throw new DL4JInvalidInputException("Got rank " + input.rank()
+ " array as input to space to channels with shape " + Arrays.toString(input.shape())
+ ". Expected rank 4 array with shape " + layerConf().getDataFormat().dimensionNames() + ". "
+ layerId());
}
if (preOutput != null && forBackprop) {
return preOutput;
}
boolean nchw = layerConf().getDataFormat() == CNN2DFormat.NCHW;
long miniBatch = input.size(0);
long depth = input.size(nchw ? 1 : 3);
long inH = input.size(nchw ? 2 : 1);
long inW = input.size(nchw ? 3 : 2);
int blockSize = getBlockSize();
long outH = inH / blockSize;
long outW = inW / blockSize;
long outDepth = depth * blockSize * blockSize;
long[] outShape = nchw ? new long[]{miniBatch, outDepth, outH, outW} : new long[]{miniBatch, outH, outW, outDepth};
INDArray out = workspaceMgr.create(ArrayType.ACTIVATIONS, input.dataType(), outShape, 'c');
//Workaround for issue: https://github.com/eclipse/deeplearning4j/issues/8859
INDArray input = this.input;
if(!Shape.hasDefaultStridesForShape(input))
input = input.dup('c');
CustomOp op = DynamicCustomOp.builder("space_to_depth")
.addInputs(input)
.addIntegerArguments(blockSize, nchw ? 0 : 1) //nchw = 0, nhwc = 1
.addOutputs(out)
.build();
Nd4j.getExecutioner().exec(op);
return out;
}
@Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
return preOutput(training, false, workspaceMgr);
}
@Override
public double calcRegularizationScore(boolean backpropParamsOnly){
return 0;
}
@Override
public boolean isPretrainLayer() {
return false;
}
@Override
public void clearNoiseWeightParams() {
//No op
}
@Override
public Gradient gradient() {
throw new UnsupportedOperationException("Not supported - no parameters");
}
@Override
public long numParams() {
return 0;
}
@Override
public double score() {
return 0;
}
@Override
public void update(INDArray gradient, String paramType) {
}
@Override
public INDArray params() {
return null;
}
@Override
public INDArray getParam(String param) {
return params();
}
@Override
public void setParams(INDArray params) {
}
}