org.deeplearning4j.nn.layers.convolution.ZeroPadding1DLayer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.layers.convolution;
import lombok.val;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.AbstractLayer;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;
import org.nd4j.common.primitives.Pair;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
public class ZeroPadding1DLayer extends AbstractLayer {
private int[] padding; // [padLeft, padRight]
public ZeroPadding1DLayer(NeuralNetConfiguration conf, DataType dataType) {
super(conf, dataType);
this.padding = ((org.deeplearning4j.nn.conf.layers.ZeroPadding1DLayer) conf.getLayer()).getPadding();
}
@Override
public boolean isPretrainLayer() {
return false;
}
@Override
public void clearNoiseWeightParams() {
//No op
}
@Override
public Type type() {
return Type.RECURRENT;
}
@Override
public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(true);
val inShape = input.shape();
INDArray epsNext = epsilon.get(NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.interval(padding[0], padding[0] + inShape[2]));
return new Pair<>((Gradient) new DefaultGradient(), workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, epsNext));
}
@Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
val inShape = input.shape();
val paddedOut = inShape[2] + padding[0] + padding[1];
val outShape = new long[] {inShape[0], inShape[1], paddedOut};
INDArray out = workspaceMgr.create(ArrayType.ACTIVATIONS, dataType, outShape, 'c');
out.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.interval(padding[0], padding[0] + inShape[2])}, input);
return out;
}
@Override
public Layer clone() {
return new ZeroPadding1DLayer(conf.clone(), dataType);
}
@Override
public double calcRegularizationScore(boolean backpropParamsOnly){
return 0;
}
}