All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.deeplearning4j.nn.layers.convolution.ZeroPaddingLayer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.layers.convolution;
import lombok.val;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.AbstractLayer;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;
import org.nd4j.common.primitives.Pair;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.deeplearning4j.nn.workspace.ArrayType;
public class ZeroPaddingLayer extends AbstractLayer {
public ZeroPaddingLayer(NeuralNetConfiguration conf, DataType dataType) {
super(conf, dataType);
}
@Override
public boolean isPretrainLayer() {
return false;
}
@Override
public void clearNoiseWeightParams() {
//No op
}
@Override
public Type type() {
return Type.CONVOLUTIONAL;
}
@Override
public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(true);
val inShape = input.shape();
boolean nchw = layerConf().getDataFormat() == CNN2DFormat.NCHW;
int hIdx = nchw ? 2 : 1;
int wIdx = nchw ? 3 : 2;
INDArray epsNext;
int[] padding = layerConf().getPadding();
if(layerConf().getDataFormat() == CNN2DFormat.NCHW){
epsNext = epsilon.get(NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.interval(padding[0], padding[0] + inShape[hIdx]),
NDArrayIndex.interval(padding[2], padding[2] + inShape[wIdx]));
} else {
//NHWC
epsNext = epsilon.get(NDArrayIndex.all(),
NDArrayIndex.interval(padding[0], padding[0] + inShape[hIdx]),
NDArrayIndex.interval(padding[2], padding[2] + inShape[wIdx]),
NDArrayIndex.all());
}
epsNext = workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, epsNext);
return new Pair<>((Gradient) new DefaultGradient(), epsNext);
}
@Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
boolean nchw = layerConf().getDataFormat() == CNN2DFormat.NCHW;
int hIdx = nchw ? 2 : 1;
int wIdx = nchw ? 3 : 2;
int[] padding = layerConf().getPadding();
val inShape = input.shape();
val outH = inShape[hIdx] + padding[0] + padding[1];
val outW = inShape[wIdx] + padding[2] + padding[3];
val outShape = nchw ? new long[] {inShape[0], inShape[1], outH, outW} : new long[] {inShape[0], outH, outW, inShape[3]};
INDArray out = workspaceMgr.create(ArrayType.ACTIVATIONS, input.dataType(), outShape, 'c');
if(nchw) {
out.put(new INDArrayIndex[]{NDArrayIndex.all(), NDArrayIndex.all(),
NDArrayIndex.interval(padding[0], padding[0] + inShape[hIdx]),
NDArrayIndex.interval(padding[2], padding[2] + inShape[wIdx])}, input);
} else {
out.put(new INDArrayIndex[]{NDArrayIndex.all(),
NDArrayIndex.interval(padding[0], padding[0] + inShape[hIdx]),
NDArrayIndex.interval(padding[2], padding[2] + inShape[wIdx]),
NDArrayIndex.all()}, input);
}
return out;
}
@Override
public Layer clone() {
return new ZeroPaddingLayer(conf.clone(), dataType);
}
@Override
public double calcRegularizationScore(boolean backpropParamsOnly){
return 0;
}
}