All Downloads are FREE. Search and download functionalities are using the official Maven repository.
Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling2D Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.layers.convolution.upsampling;
import lombok.extern.slf4j.Slf4j;
import org.deeplearning4j.exception.DL4JInvalidInputException;
import org.deeplearning4j.nn.conf.CNN2DFormat;
import org.deeplearning4j.nn.conf.CacheMode;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.AbstractLayer;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.memory.MemoryWorkspace;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.CustomOp;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.common.primitives.Pair;
import java.util.Arrays;
@Slf4j
public class Upsampling2D extends AbstractLayer {
public Upsampling2D(NeuralNetConfiguration conf, DataType dataType) {
super(conf, dataType);
}
@Override
public Type type() {
return Type.UPSAMPLING;
}
@Override
public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(true);
CNN2DFormat format = getFormat();
boolean nchw = format == CNN2DFormat.NCHW;
long miniBatch = (int) input.size(0);
long inDepth = (int) input.size(nchw ? 1 : 3);
long inH = (int) input.size(nchw ? 2 : 1);
long inW = (int) input.size(nchw ? 3 : 2);
long[] epsShape = nchw ? new long[]{miniBatch, inDepth, inH, inW} : new long[]{miniBatch, inH, inW, inDepth};
INDArray epsOut = workspaceMgr.createUninitialized(ArrayType.ACTIVATION_GRAD, epsilon.dataType(), epsShape, 'c');
Gradient gradient = new DefaultGradient();
CustomOp op = DynamicCustomOp.builder("upsampling_bp")
.addIntegerArguments(nchw ? 1 : 0) //1=NCHW, 0=NHWC
.addInputs(input, epsilon)
.addOutputs(epsOut)
.callInplace(false)
.build();
Nd4j.getExecutioner().exec(op);
epsOut = backpropDropOutIfPresent(epsOut);
return new Pair<>(gradient, epsOut);
}
protected int[] getSize(){
return layerConf().getSize();
}
protected CNN2DFormat getFormat(){
//Here so it can be overridden by Upsampling1D
return layerConf().getFormat();
}
protected INDArray preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
applyDropOutIfNecessary(training, workspaceMgr);
if (input.rank() != 4) {
throw new DL4JInvalidInputException("Got rank " + input.rank()
+ " array as input to SubsamplingLayer with shape " + Arrays.toString(input.shape())
+ ". Expected rank 4 array with shape " + layerConf().getFormat().dimensionNames() + ". "
+ layerId());
}
if (preOutput != null && forBackprop) {
return preOutput;
}
CNN2DFormat format = getFormat();
boolean nchw = format == CNN2DFormat.NCHW;
long miniBatch = (int) input.size(0);
long inDepth = (int) input.size(nchw ? 1 : 3);
long inH = (int) input.size(nchw ? 2 : 1);
long inW = (int) input.size(nchw ? 3 : 2);
int[] size = getSize();
int outH = (int)inH * size[0];
int outW = (int)inW * size[1];
long[] outShape = nchw ? new long[]{miniBatch, inDepth, outH, outW} : new long[]{miniBatch, outH, outW, inDepth};
INDArray reshapedOutput = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS, input.dataType(), outShape, 'c');
int[] intArgs = new int[] {size[0], size[1], nchw ? 1 : 0}; // 1 = NCHW, 0 = NHWC
CustomOp upsampling = DynamicCustomOp.builder("upsampling2d")
.addIntegerArguments(intArgs)
.addInputs(input)
.addOutputs(reshapedOutput)
.callInplace(false)
.build();
Nd4j.getExecutioner().exec(upsampling);
return reshapedOutput;
}
@Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
applyDropOutIfNecessary(training, workspaceMgr);
if (cacheMode == null)
cacheMode = CacheMode.NONE;
INDArray z = preOutput(training, false, workspaceMgr);
// we do cache only if cache workspace exists. Skip otherwise
if (training && cacheMode != CacheMode.NONE && workspaceMgr.hasConfiguration(ArrayType.FF_CACHE) && workspaceMgr.isWorkspaceOpen(ArrayType.FF_CACHE)) {
try (MemoryWorkspace wsB = workspaceMgr.notifyScopeBorrowed(ArrayType.FF_CACHE)) {
preOutput = z.unsafeDuplication();
}
}
return z;
}
@Override
public boolean isPretrainLayer() {
return false;
}
@Override
public void clearNoiseWeightParams() {
//No op
}
@Override
public Gradient gradient() {
throw new UnsupportedOperationException("Not supported - no parameters");
}
@Override
public void fit() {
}
@Override
public long numParams() {
return 0;
}
@Override
public void fit(INDArray input, LayerWorkspaceMgr workspaceMgr) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public double score() {
return 0;
}
@Override
public void update(INDArray gradient, String paramType) {
}
@Override
public INDArray params() {
return null;
}
@Override
public INDArray getParam(String param) {
return params();
}
@Override
public void setParams(INDArray params) {
}
}