Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.deeplearning4j.nn.layers.convolution.upsampling.Upsampling3D Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.layers.convolution.upsampling;
import lombok.extern.slf4j.Slf4j;
import org.deeplearning4j.exception.DL4JInvalidInputException;
import org.deeplearning4j.nn.conf.CacheMode;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.AbstractLayer;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.memory.MemoryWorkspace;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.CustomOp;
import org.nd4j.linalg.api.ops.DynamicCustomOp;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.common.primitives.Pair;
import java.util.Arrays;
@Slf4j
public class Upsampling3D extends AbstractLayer {
public Upsampling3D(NeuralNetConfiguration conf, DataType dataType) {
super(conf, dataType);
}
@Override
public double calcRegularizationScore(boolean backpropParamsOnly){
return 0;
}
@Override
public Type type() {
return Type.UPSAMPLING;
}
@Override
public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(true);
boolean ncdhw = layerConf().getDataFormat() == org.deeplearning4j.nn.conf.layers.Convolution3D.DataFormat.NCDHW;
// Assumes NCDHW order
long miniBatch = input.size(0);
long inChannels, inD, inH, inW;
int[] intArgs;
if(ncdhw){
inChannels = input.size(1);
inD = input.size(2);
inH = input.size(3);
inW = input.size(4);
intArgs = new int[] {1}; // 1 is channels first
} else {
inD = input.size(1);
inH = input.size(2);
inW = input.size(3);
inChannels = input.size(4);
intArgs = new int[] {0}; // 0 is channels last
}
INDArray epsOut;
if(ncdhw){
epsOut = workspaceMgr.createUninitialized(
ArrayType.ACTIVATION_GRAD, epsilon.dataType(), new long[]{miniBatch, inChannels, inD, inH, inW}, 'c');
} else {
epsOut = workspaceMgr.createUninitialized(
ArrayType.ACTIVATION_GRAD, epsilon.dataType(), new long[]{miniBatch, inD, inH, inW, inChannels}, 'c');
}
Gradient gradient = new DefaultGradient();
CustomOp op = DynamicCustomOp.builder("upsampling3d_bp")
.addIntegerArguments(intArgs)
.addInputs(input, epsilon)
.addOutputs(epsOut)
.callInplace(false)
.build();
Nd4j.getExecutioner().exec(op);
epsOut = backpropDropOutIfPresent(epsOut);
return new Pair<>(gradient, epsOut);
}
protected int[] getSize() {
return layerConf().getSize();
}
protected INDArray preOutput(boolean training, boolean forBackprop, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
applyDropOutIfNecessary(training, workspaceMgr);
if (input.rank() != 5) {
throw new DL4JInvalidInputException("Got rank " + input.rank()
+ " array as input to Upsampling3DLayer with shape " + Arrays.toString(input.shape())
+ ". Expected rank 5 array with shape "
+ "[minibatchSize, channels, inputDepth, inputHeight, inputWidth]. "
+ layerId());
}
if (preOutput != null && forBackprop) {
return preOutput;
}
boolean ncdhw = layerConf().getDataFormat() == org.deeplearning4j.nn.conf.layers.Convolution3D.DataFormat.NCDHW;
long miniBatch = input.size(0);
long inChannels, inD, inH, inW;
int[] intArgs;
int[] size = getSize();
if(ncdhw){
inChannels = (int) input.size(1);
inD = (int) input.size(2);
inH = (int) input.size(3);
inW = (int) input.size(4);
intArgs = new int[] {size[0], size[1], size[2], 1}; // 1 is channels first
} else {
inD = (int) input.size(1);
inH = (int) input.size(2);
inW = (int) input.size(3);
inChannels = (int) input.size(4);
intArgs = new int[] {size[0], size[1], size[2], 0}; // 0 is channels last
}
long outD = inD * size[0];
long outH = inH * size[1];
long outW = inW * size[2];
INDArray output;
if(ncdhw){
output = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS,
input.dataType(), new long[]{miniBatch, inChannels, outD, outH, outW}, 'c');
} else {
output = workspaceMgr.createUninitialized(ArrayType.ACTIVATIONS,
input.dataType(), new long[]{miniBatch, outD, outH, outW, inChannels}, 'c');
}
CustomOp upsampling = DynamicCustomOp.builder("upsampling3d")
.addIntegerArguments(intArgs)
.addInputs(input)
.addOutputs(output)
.callInplace(false)
.build();
Nd4j.getExecutioner().exec(upsampling);
return output;
}
@Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
applyDropOutIfNecessary(training, workspaceMgr);
if (cacheMode == null)
cacheMode = CacheMode.NONE;
INDArray z = preOutput(training, false, workspaceMgr);
// we do cache only if cache workspace exists. Skip otherwise
if (training && cacheMode != CacheMode.NONE && workspaceMgr.hasConfiguration(ArrayType.FF_CACHE)
&& workspaceMgr.isWorkspaceOpen(ArrayType.FF_CACHE)) {
try (MemoryWorkspace wsB = workspaceMgr.notifyScopeBorrowed(ArrayType.FF_CACHE)) {
preOutput = z.unsafeDuplication();
}
}
return z;
}
@Override
public boolean isPretrainLayer() {
return false;
}
@Override
public void clearNoiseWeightParams() {
//No op
}
@Override
public Gradient gradient() {
throw new UnsupportedOperationException("Not supported - no parameters");
}
@Override
public void fit() {
}
@Override
public long numParams() {
return 0;
}
@Override
public void fit(INDArray input, LayerWorkspaceMgr workspaceMgr) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public double score() {
return 0;
}
@Override
public void update(INDArray gradient, String paramType) {
}
@Override
public INDArray params() {
return null;
}
@Override
public INDArray getParam(String param) {
return params();
}
@Override
public void setParams(INDArray params) {
}
}