org.deeplearning4j.nn.layers.objdetect.DetectedObject Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.layers.objdetect;
import lombok.Data;
import org.nd4j.linalg.api.ndarray.INDArray;
@Data
public class DetectedObject {
private final int exampleNumber;
private final double centerX;
private final double centerY;
private final double width;
private final double height;
private final INDArray classPredictions;
private int predictedClass = -1;
private final double confidence;
/**
* @param exampleNumber Index of the example in the current minibatch. For single images, this is always 0
* @param centerX Center X position of the detected object
* @param centerY Center Y position of the detected object
* @param width Width of the detected object
* @param height Height of the detected object
* @param classPredictions Row vector of class probabilities for the detected object
*/
public DetectedObject(int exampleNumber, double centerX, double centerY, double width, double height,
INDArray classPredictions, double confidence){
this.exampleNumber = exampleNumber;
this.centerX = centerX;
this.centerY = centerY;
this.width = width;
this.height = height;
this.classPredictions = classPredictions;
this.confidence = confidence;
}
/**
* Get the top left X/Y coordinates of the detected object
*
* @return Array of length 2 - top left X and Y
*/
public double[] getTopLeftXY(){
return new double[]{ centerX - width / 2.0, centerY - height / 2.0};
}
/**
* Get the bottom right X/Y coordinates of the detected object
*
* @return Array of length 2 - bottom right X and Y
*/
public double[] getBottomRightXY(){
return new double[]{ centerX + width / 2.0, centerY + height / 2.0};
}
/**
* Get the index of the predicted class (based on maximum predicted probability)
* @return Index of the predicted class (0 to nClasses - 1)
*/
public int getPredictedClass(){
if(predictedClass == -1){
if(classPredictions.rank() == 1){
predictedClass = classPredictions.argMax().getInt(0);
} else {
// ravel in case we get a column vector, or rank 2 row vector, etc
predictedClass = classPredictions.ravel().argMax().getInt(0);
}
}
return predictedClass;
}
public String toString() {
return "DetectedObject(exampleNumber=" + exampleNumber + ", centerX=" + centerX + ", centerY=" + centerY +
", width=" + width + ", height=" + height + ", confidence=" + confidence
+ ", classPredictions=" + classPredictions + ", predictedClass=" + getPredictedClass() + ")";
}
}