All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.layers.recurrent.BaseRecurrentLayer Maven / Gradle / Ivy

/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.deeplearning4j.nn.layers.recurrent;

import org.deeplearning4j.nn.api.layers.RecurrentLayer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.RNNFormat;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.layers.BaseLayer;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

public abstract class BaseRecurrentLayer
                extends BaseLayer implements RecurrentLayer {

    /**
     * stateMap stores the INDArrays needed to do rnnTimeStep() forward pass.
     */
    protected Map stateMap = new ConcurrentHashMap<>();

    /**
     * State map for use specifically in truncated BPTT training. Whereas stateMap contains the
     * state from which forward pass is initialized, the tBpttStateMap contains the state at the
     * end of the last truncated bptt
     */
    protected Map tBpttStateMap = new ConcurrentHashMap<>();

    protected int helperCountFail = 0;

    public BaseRecurrentLayer(NeuralNetConfiguration conf, DataType dataType) {
        super(conf, dataType);
    }

    /**
     * Returns a shallow copy of the stateMap
     */
    @Override
    public Map rnnGetPreviousState() {
        return new HashMap<>(stateMap);
    }

    /**
     * Set the state map. Values set using this method will be used
     * in next call to rnnTimeStep()
     */
    @Override
    public void rnnSetPreviousState(Map stateMap) {
        this.stateMap.clear();
        this.stateMap.putAll(stateMap);
    }

    /**
     * Reset/clear the stateMap for rnnTimeStep() and tBpttStateMap for rnnActivateUsingStoredState()
     */
    @Override
    public void rnnClearPreviousState() {
        stateMap.clear();
        tBpttStateMap.clear();
    }

    @Override
    public Map rnnGetTBPTTState() {
        return new HashMap<>(tBpttStateMap);
    }

    @Override
    public void rnnSetTBPTTState(Map state) {
        tBpttStateMap.clear();
        tBpttStateMap.putAll(state);
    }

    public RNNFormat getDataFormat(){
        return layerConf().getRnnDataFormat();
    }

    protected INDArray permuteIfNWC(INDArray arr){
        if (arr == null){
            return null;
        }
        if (getDataFormat() == RNNFormat.NWC){
            return arr.permute(0, 2, 1);
        }
        return arr;
    }


}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy