Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.layers.recurrent;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.LayerHelper;
import org.nd4j.linalg.activations.IActivation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.common.primitives.Pair;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import java.util.Map;
public interface LSTMHelper extends LayerHelper {
boolean checkSupported(IActivation gateActivationFn, IActivation activationFn, boolean hasPeepholeConnections);
Pair backpropGradient(final NeuralNetConfiguration conf, final IActivation gateActivationFn,
final INDArray input, final INDArray recurrentWeights, //Shape: [hiddenLayerSize,4*hiddenLayerSize+3]; order: [wI,wF,wO,wG,wFF,wOO,wGG]
final INDArray inputWeights, //Shape: [n^(L-1),4*hiddenLayerSize]; order: [wi,wf,wo,wg]
final INDArray epsilon, final boolean truncatedBPTT, final int tbpttBackwardLength,
final FwdPassReturn fwdPass, final boolean forwards, final String inputWeightKey,
final String recurrentWeightKey, final String biasWeightKey,
final Map gradientViews, INDArray maskArray, //Input mask: should only be used with bidirectional RNNs + variable length
final boolean hasPeepholeConnections, //True for GravesLSTM, false for LSTM
final LayerWorkspaceMgr workspaceMgr);
FwdPassReturn activate(final Layer layer, final NeuralNetConfiguration conf, final IActivation gateActivationFn, //Activation function for the gates - sigmoid or hard sigmoid (must be found in range 0 to 1)
final INDArray input, final INDArray recurrentWeights, //Shape: [hiddenLayerSize,4*hiddenLayerSize+3]; order: [wI,wF,wO,wG,wFF,wOO,wGG]
final INDArray inputWeights, //Shape: [n^(L-1),4*hiddenLayerSize]; order: [wi,wf,wo,wg]
final INDArray biases, //Shape: [4,hiddenLayerSize]; order: [bi,bf,bo,bg]^T
final boolean training, final INDArray prevOutputActivations, final INDArray prevMemCellState,
boolean forBackprop, boolean forwards, final String inputWeightKey, INDArray maskArray, //Input mask: should only be used with bidirectional RNNs + variable length
final boolean hasPeepholeConnections, //True for GravesLSTM, false for LSTM
final LayerWorkspaceMgr workspaceMgr);
}