Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.layers.recurrent;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.RNNFormat;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.BaseOutputLayer;
import org.deeplearning4j.nn.params.DefaultParamInitializer;
import org.deeplearning4j.util.TimeSeriesUtils;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.common.primitives.Pair;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import java.util.Arrays;
public class RnnOutputLayer extends BaseOutputLayer {
public RnnOutputLayer(NeuralNetConfiguration conf, DataType dataType) {
super(conf, dataType);
}
@Override
public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(true);
if (input.rank() != 3) {
throw new UnsupportedOperationException(
"Input is not rank 3. RnnOutputLayer expects rank 3 input with shape [minibatch, layerInSize, sequenceLength]." +
" Got input with rank " + input.rank() + " and shape " + Arrays.toString(input.shape()) + " - " + layerId());
}
RNNFormat format = layerConf().getRnnDataFormat();
int td = (format == RNNFormat.NCW) ? 2 : 1;
Preconditions.checkState(labels.rank() == 3, "Expected rank 3 labels array, got label array with shape %ndShape", labels);
Preconditions.checkState(input.size(td) == labels.size(td), "Sequence lengths do not match for RnnOutputLayer input and labels:" +
"Arrays should be rank 3 with shape [minibatch, size, sequenceLength] - mismatch on dimension 2 (sequence length) - input=%ndShape vs. label=%ndShape", input, labels);
INDArray inputTemp = input;
if (layerConf().getRnnDataFormat() == RNNFormat.NWC){
this.input = input.permute(0, 2, 1);
}
this.input = TimeSeriesUtils.reshape3dTo2d(input, workspaceMgr, ArrayType.BP_WORKING_MEM);
applyDropOutIfNecessary(true, workspaceMgr); //Edge case: we skip OutputLayer forward pass during training as this isn't required to calculate gradients
Pair gradAndEpsilonNext = super.backpropGradient(epsilon, workspaceMgr); //Also applies dropout
this.input = inputTemp;
INDArray epsilon2d = gradAndEpsilonNext.getSecond();
INDArray epsilon3d = TimeSeriesUtils.reshape2dTo3d(epsilon2d, input.size(0), workspaceMgr, ArrayType.ACTIVATION_GRAD);
if (layerConf().getRnnDataFormat() == RNNFormat.NWC){
epsilon3d = epsilon3d.permute(0, 2, 1);
}
weightNoiseParams.clear();
//epsilon3d = backpropDropOutIfPresent(epsilon3d);
return new Pair<>(gradAndEpsilonNext.getFirst(), epsilon3d);
}
/**{@inheritDoc}
*/
@Override
public double f1Score(INDArray examples, INDArray labels) {
if (examples.rank() == 3)
examples = TimeSeriesUtils.reshape3dTo2d(examples, LayerWorkspaceMgr.noWorkspaces(), ArrayType.ACTIVATIONS);
if (labels.rank() == 3)
labels = TimeSeriesUtils.reshape3dTo2d(labels, LayerWorkspaceMgr.noWorkspaces(), ArrayType.ACTIVATIONS);
return super.f1Score(examples, labels);
}
public INDArray getInput() {
return input;
}
@Override
public Type type() {
return Type.RECURRENT;
}
@Override
protected INDArray preOutput2d(boolean training, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
if (input.rank() == 3) {
//Case when called from RnnOutputLayer
INDArray inputTemp = input;
input = (layerConf().getRnnDataFormat() == RNNFormat.NWC) ? input.permute(0, 2, 1):input;
input = TimeSeriesUtils.reshape3dTo2d(input, workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray out = super.preOutput(training, workspaceMgr);
this.input = inputTemp;
return out;
} else {
//Case when called from BaseOutputLayer
INDArray out = super.preOutput(training, workspaceMgr);
return out;
}
}
@Override
protected INDArray getLabels2d(LayerWorkspaceMgr workspaceMgr, ArrayType arrayType) {
INDArray labels = this.labels;
if (labels.rank() == 3){
labels = (layerConf().getRnnDataFormat() == RNNFormat.NWC) ? labels.permute(0, 2, 1) : labels;
return TimeSeriesUtils.reshape3dTo2d(labels, workspaceMgr, arrayType);
}
return labels;
}
@Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
INDArray input = this.input;
if (input.rank() != 3)
throw new UnsupportedOperationException(
"Input must be rank 3. Got input with rank " + input.rank() + " " + layerId());
INDArray b = getParamWithNoise(DefaultParamInitializer.BIAS_KEY, training, workspaceMgr);
INDArray W = getParamWithNoise(DefaultParamInitializer.WEIGHT_KEY, training, workspaceMgr);
applyDropOutIfNecessary(training, workspaceMgr);
if (layerConf().getRnnDataFormat() == RNNFormat.NWC){
input = input.permute(0, 2, 1);
}
INDArray input2d = TimeSeriesUtils.reshape3dTo2d(input.castTo(W.dataType()), workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray act2d = layerConf().getActivationFn().getActivation(input2d.mmul(W).addiRowVector(b), training);
if (maskArray != null) {
if(!maskArray.isColumnVectorOrScalar() || Arrays.equals(maskArray.shape(), act2d.shape())){
//Per output masking
act2d.muli(maskArray.castTo(act2d.dataType()));
} else {
//Per time step masking
act2d.muliColumnVector(maskArray.castTo(act2d.dataType()));
}
}
INDArray ret = TimeSeriesUtils.reshape2dTo3d(act2d, input.size(0), workspaceMgr, ArrayType.ACTIVATIONS);
if (layerConf().getRnnDataFormat() == RNNFormat.NWC){
ret = ret.permute(0, 2, 1);
}
return ret;
}
@Override
public void setMaskArray(INDArray maskArray) {
if (maskArray != null) {
//Two possible cases:
//(a) per time step masking - rank 2 mask array -> reshape to rank 1 (column vector)
//(b) per output masking - rank 3 mask array -> reshape to rank 2 (
if (maskArray.rank() == 2) {
this.maskArray = TimeSeriesUtils.reshapeTimeSeriesMaskToVector(maskArray, LayerWorkspaceMgr.noWorkspacesImmutable(), ArrayType.INPUT);
} else if (maskArray.rank() == 3) {
this.maskArray = TimeSeriesUtils.reshape3dTo2d(maskArray, LayerWorkspaceMgr.noWorkspacesImmutable(), ArrayType.INPUT);
} else {
throw new UnsupportedOperationException(
"Invalid mask array: must be rank 2 or 3 (got: rank " + maskArray.rank() + ", shape = "
+ Arrays.toString(maskArray.shape()) + ") " + layerId());
}
} else {
this.maskArray = null;
}
}
@Override
public Pair feedForwardMaskArray(INDArray maskArray, MaskState currentMaskState,
int minibatchSize) {
//If the *input* mask array is present and active, we should use it to mask the output
if (maskArray != null && currentMaskState == MaskState.Active) {
this.inputMaskArray = TimeSeriesUtils.reshapeTimeSeriesMaskToVector(maskArray, LayerWorkspaceMgr.noWorkspacesImmutable(), ArrayType.INPUT);
this.inputMaskArrayState = currentMaskState;
} else {
this.inputMaskArray = null;
this.inputMaskArrayState = null;
}
return null; //Last layer in network
}
/**Compute the score for each example individually, after labels and input have been set.
*
* @param fullNetRegTerm Regularization score term for the entire network (or, 0.0 to not include regularization)
* @return A column INDArray of shape [numExamples,1], where entry i is the score of the ith example
*/
@Override
public INDArray computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr) {
//For RNN: need to sum up the score over each time step before returning.
if (input == null || labels == null)
throw new IllegalStateException("Cannot calculate score without input and labels " + layerId());
INDArray preOut = preOutput2d(false, workspaceMgr);
ILossFunction lossFunction = layerConf().getLossFn();
INDArray scoreArray =
lossFunction.computeScoreArray(getLabels2d(workspaceMgr, ArrayType.FF_WORKING_MEM), preOut,
layerConf().getActivationFn(), maskArray);
//scoreArray: shape [minibatch*timeSeriesLength, 1]
//Reshape it to [minibatch, timeSeriesLength] then sum over time step
INDArray scoreArrayTs = TimeSeriesUtils.reshapeVectorToTimeSeriesMask(scoreArray, (int)input.size(0));
INDArray summedScores = scoreArrayTs.sum(true, 1);
if (fullNetRegTerm != 0.0) {
summedScores.addi(fullNetRegTerm);
}
return summedScores;
}
}