All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.layers.samediff.SameDiffOutputLayer Maven / Gradle / Ivy

/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.deeplearning4j.nn.layers.samediff;

import lombok.Getter;
import lombok.Setter;
import lombok.val;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.layers.IOutputLayer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.AbstractLayer;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.nd4j.autodiff.samediff.SDVariable;
import org.nd4j.autodiff.samediff.SameDiff;
import org.nd4j.autodiff.samediff.array.SingleThreadArrayHolder;
import org.nd4j.autodiff.samediff.internal.InferenceSession;
import org.nd4j.autodiff.samediff.internal.SessionMemMgr;
import org.nd4j.common.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.memory.MemoryWorkspace;
import org.nd4j.linalg.api.memory.conf.WorkspaceConfiguration;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.api.DataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.common.primitives.Pair;

import java.util.*;

public class SameDiffOutputLayer extends AbstractLayer
    implements IOutputLayer {

    public static final String INPUT_KEY = "input";
    public static final String LABELS_KEY = "labels";

    protected SameDiff sameDiff;
    protected SDVariable outputVar;
    protected String outputKey;

    @Getter @Setter
    protected INDArray labels;

    protected INDArray params;
    protected INDArray gradients;
    protected Map paramTable;
    protected Map gradTable;


    public SameDiffOutputLayer(NeuralNetConfiguration conf, DataType dataType){
        super(conf, dataType);
    }

    @Override
    public Layer clone() {
        throw new UnsupportedOperationException();
    }

    @Override
    public boolean isPretrainLayer() {
        return false;
    }

    @Override
    public void clearNoiseWeightParams() {
        //TODO - properly support weight noise...
    }

    @Override
    public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
        return activateHelper(true, workspaceMgr);
    }

    private INDArray activateHelper(boolean activations, LayerWorkspaceMgr workspaceMgr){
        assertInputSet(false);

        //Check where the output occurs. If it's a simple loss layer (no params) this could
        // just be the input!
        if(activations && INPUT_KEY.equals(layerConf().activationsVertexName())){
            return workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, input);
        }

        //TODO optimize
        try(MemoryWorkspace ws = Nd4j.getWorkspaceManager().scopeOutOfWorkspaces()) {
            if (sameDiff == null) {
                doInit();
            }
        }

        //Configure memory management for SameDiff instance - use DL4J workspaces
        String wsNameWorking = workspaceMgr.getWorkspaceName(ArrayType.FF_WORKING_MEM);
        String wsNameOutput = workspaceMgr.getWorkspaceName(ArrayType.ACTIVATIONS);
        WorkspaceConfiguration confWorking = workspaceMgr.getConfiguration(ArrayType.FF_WORKING_MEM);
        WorkspaceConfiguration confOutput = workspaceMgr.getConfiguration(ArrayType.ACTIVATIONS);
        boolean actScopedOut = workspaceMgr.isScopedOut(ArrayType.ACTIVATIONS);
        Preconditions.checkState(actScopedOut || wsNameOutput != null, "Activations must have a workspace or must be scoped out");
        SessionMemMgr mmgr = new DL4JSameDiffMemoryMgr(wsNameWorking, wsNameOutput, confWorking, confOutput);

        InferenceSession is = sameDiff.getSessions().get(Thread.currentThread().getId());
        if(is == null){
            is = SameDiff.getInferenceFactory().create(sameDiff);
            sameDiff.getSessions().put(Thread.currentThread().getId(), is);
        }
        is.setMmgr(mmgr);

        Map phMap = new HashMap<>();
        phMap.put(INPUT_KEY, input);
        if(!activations && layerConf().labelsRequired() && labels != null) {
            phMap.put(LABELS_KEY, labels);
        }

        String s = activations ? layerConf().activationsVertexName() : outputVar.name();

        INDArray out = sameDiff.outputSingle(phMap, s);

        //Clear placeholders and op inputs to ensure no out-of-scope arrays are still referenced anywhere
        sameDiff.clearPlaceholders(true);
        sameDiff.clearOpInputs();

        //Edge case: vertex is just an Identity function, for example
        //TODO there may be a cleaner way to do this...
        if(!actScopedOut && !out.data().getParentWorkspace().getId().equals(wsNameOutput)){
            out = workspaceMgr.dup(ArrayType.ACTIVATIONS, out);
        } else if(actScopedOut && out.isAttached()){
            out = out.detach();
        }

        return out;
    }


    @Override
    public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
        assertInputSet(true);
        Preconditions.checkState(!layerConf().labelsRequired() || labels != null, "Cannot execute backprop: Labels are not set. " +
                "If labels are not required for this SameDiff output layer, override SameDiffOutputLayer.labelsRequired()" +
                " to return false instead");
        Gradient g = new DefaultGradient();

        INDArray dLdIn;
        try(MemoryWorkspace ws = Nd4j.getWorkspaceManager().scopeOutOfWorkspaces()) {
            if (sameDiff == null) {
                //Usually doInit will be called in forward pass; not necessarily the case in output layers
                // (for efficiency, we skip output layer forward pass in MultiLayerNetwork/ComputationGraph)
                doInit();
            }
            if(sameDiff.getFunction("grad") == null)
                sameDiff.createGradFunction(INPUT_KEY);
        }

        //Configure memory management for SameDiff instance - use DL4J workspaces
        Map sessionMap = sameDiff.getFunction("grad").getSessions();
        if(!sessionMap.containsKey(Thread.currentThread().getId())){
            sessionMap.put(Thread.currentThread().getId(), SameDiff.getInferenceFactory().create(sameDiff.getFunction("grad")));
        }
        String wsNameWorking = workspaceMgr.getWorkspaceName(ArrayType.BP_WORKING_MEM);
        String wsNameActGrad = workspaceMgr.getWorkspaceName(ArrayType.ACTIVATION_GRAD);
        WorkspaceConfiguration confWorking = workspaceMgr.getConfiguration(ArrayType.BP_WORKING_MEM);
        WorkspaceConfiguration confOutput = workspaceMgr.getConfiguration(ArrayType.ACTIVATION_GRAD);

        boolean actGradScopedOut = workspaceMgr.isScopedOut(ArrayType.ACTIVATION_GRAD);
        Preconditions.checkState(actGradScopedOut || wsNameActGrad != null, "Activation gradients must have a workspace or be scoped out");
        SessionMemMgr mmgr = new DL4JSameDiffMemoryMgr(wsNameWorking, wsNameActGrad, confWorking, confOutput);
        sessionMap.get(Thread.currentThread().getId()).setMmgr(mmgr);

        if(!sameDiff.hasGradientFunction()) {
            //Create when scoped out, to ensure any arrays are not in WS
            sameDiff.createGradFunction(INPUT_KEY);
        }

        List gradVarNames = new ArrayList<>();
        gradVarNames.addAll(paramTable.keySet());
        gradVarNames.add(INPUT_KEY);

        Map phMap = new HashMap<>();
        phMap.put(INPUT_KEY, input);
        phMap.put(LABELS_KEY, labels);

        Map grads = sameDiff.calculateGradients(phMap, gradVarNames);
        for(String s : paramTable.keySet() ){
            INDArray sdGrad = grads.get(s);
            INDArray dl4jGrad = gradTable.get(s);
            dl4jGrad.assign(sdGrad);                                            //TODO OPTIMIZE THIS
            g.gradientForVariable().put(s, dl4jGrad);
            if(sdGrad.closeable()){
                sdGrad.close();
            }
        }

        dLdIn = grads.get(INPUT_KEY);

        //Clear placeholders and op inputs to ensure no out-of-scope arrays are still referenced anywhere
        sameDiff.clearPlaceholders(true);
        sameDiff.clearOpInputs();

        //TODO there may be a cleaner way to do this...
        if(!actGradScopedOut && !dLdIn.data().getParentWorkspace().getId().equals(wsNameActGrad)){
            dLdIn = workspaceMgr.dup(ArrayType.ACTIVATION_GRAD, dLdIn);
        } else if(actGradScopedOut && dLdIn.isAttached()){
            dLdIn = dLdIn.detach();
        }

        return new Pair<>(g, dLdIn);
    }

    /**Returns the parameters of the neural network as a flattened row vector
     * @return the parameters of the neural network
     */
    @Override
    public INDArray params() {
        return params;
    }

    @Override
    public INDArray getParam(String param) {
        return paramTable.get(param);
    }

    @Override
    public long numParams(){
        return params == null ? 0 : (int)params.length();
    }

    @Override
    public void setParam(String key, INDArray val) {
        if(!paramTable.containsKey(key)){
            throw new IllegalArgumentException("Cannot set parameter, invalid/unknown parameter key: " + key);
        }
        INDArray current = paramTable.get(key);
        if(!Arrays.equals(current.shape(), val.shape())){
            throw new IllegalArgumentException("Cannot set parameter \"" + key + "\", invalid shape: parameter array has shape "
                    + Arrays.toString(current.shape()) + ", trying to set parameter of shape " + Arrays.toString(val.shape()));
        }
    }

    @Override
    public void setParams(INDArray params) {
        if (params != null) {
            throw new UnsupportedOperationException("Not supported");
        }
    }

    protected void setParams(INDArray params, char order) {
        setParams(params);
    }

    @Override
    public void setParamsViewArray(INDArray params) {
        this.params = params;
    }

    @Override
    public INDArray getGradientsViewArray() {
        return gradients;
    }

    @Override
    public void setBackpropGradientsViewArray(INDArray gradients) {
        this.gradients = gradients;
        this.gradTable = layerConf().initializer().getGradientsFromFlattened(conf(), gradients);
    }

    @Override
    public void setParamTable(Map paramTable) {
        if(this.paramTable == null){
            this.paramTable = paramTable;
        } else {
            for (Map.Entry e : paramTable.entrySet()) {
                setParam(e.getKey(), e.getValue());
            }
        }
    }

    @Override
    public Map paramTable() {
        return paramTable(false);
    }

    @Override
    public Map paramTable(boolean backpropParamsOnly) {
        return paramTable;
    }

    protected void doInit(){
        try(MemoryWorkspace ws = Nd4j.getWorkspaceManager().scopeOutOfWorkspaces()) {
            org.deeplearning4j.nn.conf.layers.samediff.SameDiffOutputLayer bl = layerConf();
            sameDiff = SameDiff.create();
            //Use SingleThreadArrayHolder so we can use views (also don't nede multithreading here, DL4J is not thread safe)
            sameDiff.setArrayHolders(new SingleThreadArrayHolder(), new SingleThreadArrayHolder(), false);
            Map p = paramTable();

            long[] inputShape = input.shape().clone();
            inputShape[0] = -1;
            SDVariable inputVar = sameDiff.placeHolder(INPUT_KEY, dataType, inputShape);
            SDVariable labelVar = null;
            if(layerConf().labelsRequired()){
                long[] labelShape = labels == null ? new long[]{-1, -1} : labels.shape().clone();
                labelShape[0] = -1;
                labelVar = sameDiff.placeHolder(LABELS_KEY, dataType, labelShape);
            }
            Map paramShapes = layerConf().getLayerParams().getParamShapes();
            Map params = new LinkedHashMap<>();
            for (String s : paramShapes.keySet()) {
                val ps = paramShapes.get(s);
                SDVariable v = sameDiff.var(s, dataType, ps);
                params.put(s, v);
            }
            SDVariable layerOutput = bl.defineLayer(sameDiff, inputVar, labelVar, params);
            Preconditions.checkNotNull(layerOutput, "Invalid output: layer output is null");
            outputVar = layerOutput;

            for (Map.Entry e : p.entrySet()) {
                INDArray arr = e.getValue();
                sameDiff.associateArrayWithVariable(arr, sameDiff.getVariable(e.getKey()));
            }

            this.outputKey = layerOutput.name();
        }
    }

    @Override
    public boolean needsLabels() {
        return layerConf().labelsRequired();
    }

    @Override
    public double computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr) {
        INDArray scoreArr = activateHelper(false, workspaceMgr);
        return (scoreArr.getDouble(0) + fullNetRegTerm) / input.size(0);
    }

    @Override
    public INDArray computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr) {
        throw new UnsupportedOperationException("Not yet implemented");
    }

    @Override
    public double f1Score(DataSet data) {
        throw new UnsupportedOperationException("Not supported");
    }

    @Override
    public double f1Score(INDArray examples, INDArray labels) {
        throw new UnsupportedOperationException("Not supported");
    }

    @Override
    public int numLabels() {
        return 0;
    }

    @Override
    public void fit(DataSetIterator iter) {
        throw new UnsupportedOperationException("Not supported");
    }

    @Override
    public int[] predict(INDArray examples) {
        throw new UnsupportedOperationException("Not supported");
    }

    @Override
    public List predict(DataSet dataSet) {
        throw new UnsupportedOperationException("Not supported");
    }

    @Override
    public void fit(INDArray examples, INDArray labels) {
        throw new UnsupportedOperationException("Not supported");
    }

    @Override
    public void fit(DataSet data) {
        throw new UnsupportedOperationException("Not supported");
    }

    @Override
    public void fit(INDArray examples, int[] labels) {
        throw new UnsupportedOperationException("Not supported");
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy