Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.params;
import lombok.val;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.weights.WeightInitUtil;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.indexing.NDArrayIndex;
import java.util.LinkedHashMap;
import java.util.Map;
public class DeconvolutionParamInitializer extends ConvolutionParamInitializer {
private static final DeconvolutionParamInitializer INSTANCE = new DeconvolutionParamInitializer();
public static DeconvolutionParamInitializer getInstance() {
return INSTANCE;
}
@Override
protected INDArray createWeightMatrix(NeuralNetConfiguration conf, INDArray weightView, boolean initializeParams) {
/*
Create a 4d weight matrix of:
(number of kernels, num input channels, kernel height, kernel width)
Note c order is used specifically for the CNN weights, as opposed to f order elsewhere
Inputs to the convolution layer are:
(batch size, num input feature maps, image height, image width)
*/
org.deeplearning4j.nn.conf.layers.Deconvolution2D layerConf =
(org.deeplearning4j.nn.conf.layers.Deconvolution2D) conf.getLayer();
if (initializeParams) {
int[] kernel = layerConf.getKernelSize();
int[] stride = layerConf.getStride();
val inputDepth = layerConf.getNIn();
val outputDepth = layerConf.getNOut();
double fanIn = inputDepth * kernel[0] * kernel[1];
double fanOut = outputDepth * kernel[0] * kernel[1] / ((double) stride[0] * stride[1]);
val weightsShape = new long[] {inputDepth, outputDepth, kernel[0], kernel[1]};
INDArray weights = layerConf.getWeightInitFn().init(
fanIn, fanOut, weightsShape, 'c', weightView);
return weights;
} else {
int[] kernel = layerConf.getKernelSize();
INDArray weights = WeightInitUtil.reshapeWeights(
new long[] {layerConf.getNIn(), layerConf.getNOut(), kernel[0],
kernel[1]}, weightView, 'c');
return weights;
}
}
@Override
public Map getGradientsFromFlattened(NeuralNetConfiguration conf, INDArray gradientView) {
org.deeplearning4j.nn.conf.layers.Deconvolution2D layerConf =
(org.deeplearning4j.nn.conf.layers.Deconvolution2D) conf.getLayer();
int[] kernel = layerConf.getKernelSize();
val nIn = layerConf.getNIn();
val nOut = layerConf.getNOut();
INDArray gradientViewReshape = gradientView.reshape(gradientView.length());
Map out = new LinkedHashMap<>();
if(layerConf.hasBias()){
INDArray biasGradientView = gradientViewReshape.get(NDArrayIndex.interval(0, nOut));
INDArray weightGradientView =
gradientViewReshape.get(NDArrayIndex.interval(nOut, numParams(conf)))
.reshape('c', nIn, nOut, kernel[0], kernel[1]);
out.put(BIAS_KEY, biasGradientView);
out.put(WEIGHT_KEY, weightGradientView);
} else {
INDArray weightGradientView = gradientView.reshape('c', nIn, nOut, kernel[0], kernel[1]);
out.put(WEIGHT_KEY, weightGradientView);
}
return out;
}
}