Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.params;
import lombok.val;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.FeedForwardLayer;
import org.deeplearning4j.nn.conf.layers.Layer;
import org.deeplearning4j.nn.weights.IWeightInit;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.indexing.NDArrayIndex;
import java.util.Collections;
import java.util.LinkedHashMap;
import java.util.Map;
public class ElementWiseParamInitializer extends DefaultParamInitializer{
private static final ElementWiseParamInitializer INSTANCE = new ElementWiseParamInitializer();
public static ElementWiseParamInitializer getInstance() {
return INSTANCE;
}
@Override
public long numParams(Layer layer) {
FeedForwardLayer layerConf = (FeedForwardLayer) layer;
val nIn = layerConf.getNIn();
return nIn*2; //weights + bias
}
/**
* Initialize the parameters
*
* @param conf the configuration
* @param paramsView a view of the full network (backprop) parameters
* @param initializeParams if true: initialize the parameters according to the configuration. If false: don't modify the
* values in the paramsView array (but do select out the appropriate subset, reshape etc as required)
* @return Map of parameters keyed by type (view of the 'paramsView' array)
*/
@Override
public Map init(NeuralNetConfiguration conf, INDArray paramsView, boolean initializeParams) {
if (!(conf.getLayer() instanceof FeedForwardLayer))
throw new IllegalArgumentException("unsupported layer type: " + conf.getLayer().getClass().getName());
Map params = Collections.synchronizedMap(new LinkedHashMap());
val length = numParams(conf);
if (paramsView.length() != length)
throw new IllegalStateException(
"Expected params view of length " + length + ", got length " + paramsView.length());
FeedForwardLayer layerConf =
(FeedForwardLayer) conf.getLayer();
val nIn = layerConf.getNIn();
INDArray paramsViewReshape = paramsView.reshape(paramsView.length());
val nWeightParams = nIn ;
INDArray weightView = paramsViewReshape.get(NDArrayIndex.interval(0, nWeightParams));
INDArray biasView = paramsViewReshape.get(
NDArrayIndex.interval(nWeightParams, nWeightParams + nIn));
params.put(WEIGHT_KEY, createWeightMatrix(conf, weightView, initializeParams));
params.put(BIAS_KEY, createBias(conf, biasView, initializeParams));
conf.addVariable(WEIGHT_KEY);
conf.addVariable(BIAS_KEY);
return params;
}
/**
* Return a map of gradients (in their standard non-flattened representation), taken from the flattened (row vector) gradientView array.
* The idea is that operates in exactly the same way as the paramsView does in
* thus the position in the view (and, the array orders) must match those of the parameters
*
* @param conf Configuration
* @param gradientView The flattened gradients array, as a view of the larger array
* @return A map containing an array by parameter type, that is a view of the full network gradients array
*/
@Override
public Map getGradientsFromFlattened(NeuralNetConfiguration conf, INDArray gradientView) {
FeedForwardLayer layerConf =
(FeedForwardLayer) conf.getLayer();
val nIn = layerConf.getNIn();
val nOut = layerConf.getNOut();
val nWeightParams = nIn ;
INDArray gradientViewReshape = gradientView.reshape(gradientView.length());
INDArray weightGradientView = gradientViewReshape.get( NDArrayIndex.interval(0, nWeightParams));
INDArray biasView = gradientViewReshape.get(
NDArrayIndex.interval(nWeightParams, nWeightParams + nOut)); //Already a row vector
Map out = new LinkedHashMap<>();
out.put(WEIGHT_KEY, weightGradientView);
out.put(BIAS_KEY, biasView);
return out;
}
@Override
protected INDArray createWeightMatrix(long nIn, long nOut, IWeightInit weightInit,
INDArray weightParamView, boolean initializeParameters) {
val shape = new long[] {1,nIn};
if (initializeParameters) {
INDArray ret = weightInit.init(nIn, //Fan in
nOut, //Fan out
shape, IWeightInit.DEFAULT_WEIGHT_INIT_ORDER, weightParamView);
return ret;
} else {
return weightParamView;
}
}
}