All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer Maven / Gradle / Ivy

/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.deeplearning4j.nn.params;

import lombok.val;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.Layer;
import org.deeplearning4j.nn.weights.IWeightInit;
import org.deeplearning4j.nn.weights.WeightInitUtil;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;

import java.util.*;

public class GravesBidirectionalLSTMParamInitializer implements ParamInitializer {

    private static final GravesBidirectionalLSTMParamInitializer INSTANCE =
            new GravesBidirectionalLSTMParamInitializer();

    public static GravesBidirectionalLSTMParamInitializer getInstance() {
        return INSTANCE;
    }

    /**
     * Weights for previous time step -> current time step connections
     */
    public final static String RECURRENT_WEIGHT_KEY_FORWARDS = "RWF";
    public final static String BIAS_KEY_FORWARDS = DefaultParamInitializer.BIAS_KEY + "F";
    public final static String INPUT_WEIGHT_KEY_FORWARDS = DefaultParamInitializer.WEIGHT_KEY + "F";

    public final static String RECURRENT_WEIGHT_KEY_BACKWARDS = "RWB";
    public final static String BIAS_KEY_BACKWARDS = DefaultParamInitializer.BIAS_KEY + "B";
    public final static String INPUT_WEIGHT_KEY_BACKWARDS = DefaultParamInitializer.WEIGHT_KEY + "B";

    private static final List WEIGHT_KEYS = Collections.unmodifiableList(Arrays.asList(INPUT_WEIGHT_KEY_FORWARDS,
            INPUT_WEIGHT_KEY_BACKWARDS, RECURRENT_WEIGHT_KEY_FORWARDS, RECURRENT_WEIGHT_KEY_BACKWARDS));
    private static final List BIAS_KEYS = Collections.unmodifiableList(Arrays.asList(BIAS_KEY_FORWARDS, BIAS_KEY_BACKWARDS));
    private static final List ALL_PARAM_KEYS = Collections.unmodifiableList(Arrays.asList(INPUT_WEIGHT_KEY_FORWARDS,
            INPUT_WEIGHT_KEY_BACKWARDS, RECURRENT_WEIGHT_KEY_FORWARDS, RECURRENT_WEIGHT_KEY_BACKWARDS, BIAS_KEY_FORWARDS,
            BIAS_KEY_BACKWARDS));

    @Override
    public long numParams(NeuralNetConfiguration conf) {
        return numParams(conf.getLayer());
    }

    @Override
    public long numParams(Layer l) {
        org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM layerConf =
                (org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM) l;

        val nL = layerConf.getNOut(); //i.e., n neurons in this layer
        val nLast = layerConf.getNIn(); //i.e., n neurons in previous layer

        val nParamsForward = nLast * (4 * nL) //"input" weights
                + nL * (4 * nL + 3) //recurrent weights
                + 4 * nL; //bias

        return 2 * nParamsForward;
    }

    @Override
    public List paramKeys(Layer layer) {
        return ALL_PARAM_KEYS;
    }

    @Override
    public List weightKeys(Layer layer) {
        return WEIGHT_KEYS;
    }

    @Override
    public List biasKeys(Layer layer) {
        return BIAS_KEYS;
    }

    @Override
    public boolean isWeightParam(Layer layer, String key) {
        return RECURRENT_WEIGHT_KEY_FORWARDS.equals(key) || INPUT_WEIGHT_KEY_FORWARDS.equals(key)
                || RECURRENT_WEIGHT_KEY_BACKWARDS.equals(key) || INPUT_WEIGHT_KEY_BACKWARDS.equals(key);
    }

    @Override
    public boolean isBiasParam(Layer layer, String key) {
        return BIAS_KEY_FORWARDS.equals(key) || BIAS_KEY_BACKWARDS.equals(key);
    }

    @Override
    public Map init(NeuralNetConfiguration conf, INDArray paramsView, boolean initializeParams) {
        Map params = Collections.synchronizedMap(new LinkedHashMap());

        org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM layerConf =
                (org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM) conf.getLayer();
        double forgetGateInit = layerConf.getForgetGateBiasInit();

        val nL = layerConf.getNOut(); //i.e., n neurons in this layer
        val nLast = layerConf.getNIn(); //i.e., n neurons in previous layer

        conf.addVariable(INPUT_WEIGHT_KEY_FORWARDS);
        conf.addVariable(RECURRENT_WEIGHT_KEY_FORWARDS);
        conf.addVariable(BIAS_KEY_FORWARDS);
        conf.addVariable(INPUT_WEIGHT_KEY_BACKWARDS);
        conf.addVariable(RECURRENT_WEIGHT_KEY_BACKWARDS);
        conf.addVariable(BIAS_KEY_BACKWARDS);

        val nParamsInput = nLast * (4 * nL);
        val nParamsRecurrent = nL * (4 * nL + 3);
        val nBias = 4 * nL;

        val rwFOffset = nParamsInput;
        val bFOffset = rwFOffset + nParamsRecurrent;
        val iwROffset = bFOffset + nBias;
        val rwROffset = iwROffset + nParamsInput;
        val bROffset = rwROffset + nParamsRecurrent;

        INDArray paramsViewReshape = paramsView.reshape(paramsView.length());
        INDArray iwF = paramsViewReshape.get(NDArrayIndex.interval(0, rwFOffset));
        INDArray rwF = paramsViewReshape.get(NDArrayIndex.interval(rwFOffset, bFOffset));
        INDArray bF = paramsViewReshape.get(NDArrayIndex.interval(bFOffset, iwROffset));
        INDArray iwR = paramsViewReshape.get(NDArrayIndex.interval(iwROffset, rwROffset));
        INDArray rwR = paramsViewReshape.get(NDArrayIndex.interval(rwROffset, bROffset));
        INDArray bR = paramsViewReshape.get(NDArrayIndex.interval(bROffset, bROffset + nBias));

        if (initializeParams) {
            bF.put(new INDArrayIndex[]{NDArrayIndex.interval(nL, 2 * nL)},
                    Nd4j.ones(1, nL).muli(forgetGateInit)); //Order: input, forget, output, input modulation, i.e., IFOG
            bR.put(new INDArrayIndex[]{NDArrayIndex.interval(nL, 2 * nL)},
                    Nd4j.ones(1, nL).muli(forgetGateInit));
        }
        /*The above line initializes the forget gate biases to specified value.
         * See Sutskever PhD thesis, pg19:
         * "it is important for [the forget gate activations] to be approximately 1 at the early stages of learning,
         *  which is accomplished by initializing [the forget gate biases] to a large value (such as 5). If it is
         *  not done, it will be harder to learn long range dependencies because the smaller values of the forget
         *  gates will create a vanishing gradients problem."
         *  http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
         */

        if (initializeParams) {
            //As per standard LSTM
            val fanIn = nL;
            val fanOut = nLast + nL;
            val inputWShape = new long[]{nLast, 4 * nL};
            val recurrentWShape = new long[]{nL, 4 * nL + 3};

            params.put(INPUT_WEIGHT_KEY_FORWARDS, layerConf.getWeightInitFn().init(fanIn, fanOut, inputWShape,
                    IWeightInit.DEFAULT_WEIGHT_INIT_ORDER, iwF));
            params.put(RECURRENT_WEIGHT_KEY_FORWARDS, layerConf.getWeightInitFn().init(fanIn, fanOut, recurrentWShape,
                    IWeightInit.DEFAULT_WEIGHT_INIT_ORDER, rwF));
            params.put(BIAS_KEY_FORWARDS, bF);
            params.put(INPUT_WEIGHT_KEY_BACKWARDS, layerConf.getWeightInitFn().init(fanIn, fanOut, inputWShape,
                    IWeightInit.DEFAULT_WEIGHT_INIT_ORDER, iwR));
            params.put(RECURRENT_WEIGHT_KEY_BACKWARDS, layerConf.getWeightInitFn().init(fanIn, fanOut, recurrentWShape,
                    IWeightInit.DEFAULT_WEIGHT_INIT_ORDER, rwR));
            params.put(BIAS_KEY_BACKWARDS, bR);
        } else {
            params.put(INPUT_WEIGHT_KEY_FORWARDS, WeightInitUtil.reshapeWeights(new long[]{nLast, 4 * nL}, iwF));
            params.put(RECURRENT_WEIGHT_KEY_FORWARDS, WeightInitUtil.reshapeWeights(new long[]{nL, 4 * nL + 3}, rwF));
            params.put(BIAS_KEY_FORWARDS, bF);
            params.put(INPUT_WEIGHT_KEY_BACKWARDS, WeightInitUtil.reshapeWeights(new long[]{nLast, 4 * nL}, iwR));
            params.put(RECURRENT_WEIGHT_KEY_BACKWARDS, WeightInitUtil.reshapeWeights(new long[]{nL, 4 * nL + 3}, rwR));
            params.put(BIAS_KEY_BACKWARDS, bR);
        }

        return params;
    }


    @Override
    public Map getGradientsFromFlattened(NeuralNetConfiguration conf, INDArray gradientView) {
        org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM layerConf =
                (org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM) conf.getLayer();

        val nL = layerConf.getNOut(); //i.e., n neurons in this layer
        val nLast = layerConf.getNIn(); //i.e., n neurons in previous layer

        val nParamsInput = nLast * (4 * nL);
        val nParamsRecurrent = nL * (4 * nL + 3);
        val nBias = 4 * nL;

        val rwFOffset = nParamsInput;
        val bFOffset = rwFOffset + nParamsRecurrent;
        val iwROffset = bFOffset + nBias;
        val rwROffset = iwROffset + nParamsInput;
        val bROffset = rwROffset + nParamsRecurrent;
        INDArray gradientViewReshape = gradientView.reshape(gradientView.length());
        INDArray iwFG = gradientViewReshape.get(NDArrayIndex.interval(0, rwFOffset)).reshape('f', nLast,
                4 * nL);
        INDArray rwFG = gradientViewReshape.get(NDArrayIndex.interval(rwFOffset, bFOffset)).reshape('f',
                nL, 4 * nL + 3);
        INDArray bFG = gradientViewReshape.get(NDArrayIndex.interval(bFOffset, iwROffset));
        INDArray iwRG = gradientViewReshape.get(NDArrayIndex.interval(iwROffset, rwROffset))
                .reshape('f', nLast, 4 * nL);
        INDArray rwRG = gradientViewReshape.get(NDArrayIndex.interval(rwROffset, bROffset)).reshape('f',
                nL, 4 * nL + 3);
        INDArray bRG = gradientViewReshape.get(NDArrayIndex.interval(bROffset, bROffset + nBias));

        Map out = new LinkedHashMap<>();
        out.put(INPUT_WEIGHT_KEY_FORWARDS, iwFG);
        out.put(RECURRENT_WEIGHT_KEY_FORWARDS, rwFG);
        out.put(BIAS_KEY_FORWARDS, bFG);
        out.put(INPUT_WEIGHT_KEY_BACKWARDS, iwRG);
        out.put(RECURRENT_WEIGHT_KEY_BACKWARDS, rwRG);
        out.put(BIAS_KEY_BACKWARDS, bRG);

        return out;
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy