Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
org.deeplearning4j.nn.params.GravesBidirectionalLSTMParamInitializer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.params;
import lombok.val;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.Layer;
import org.deeplearning4j.nn.weights.IWeightInit;
import org.deeplearning4j.nn.weights.WeightInitUtil;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;
import java.util.*;
public class GravesBidirectionalLSTMParamInitializer implements ParamInitializer {
private static final GravesBidirectionalLSTMParamInitializer INSTANCE =
new GravesBidirectionalLSTMParamInitializer();
public static GravesBidirectionalLSTMParamInitializer getInstance() {
return INSTANCE;
}
/**
* Weights for previous time step -> current time step connections
*/
public final static String RECURRENT_WEIGHT_KEY_FORWARDS = "RWF";
public final static String BIAS_KEY_FORWARDS = DefaultParamInitializer.BIAS_KEY + "F";
public final static String INPUT_WEIGHT_KEY_FORWARDS = DefaultParamInitializer.WEIGHT_KEY + "F";
public final static String RECURRENT_WEIGHT_KEY_BACKWARDS = "RWB";
public final static String BIAS_KEY_BACKWARDS = DefaultParamInitializer.BIAS_KEY + "B";
public final static String INPUT_WEIGHT_KEY_BACKWARDS = DefaultParamInitializer.WEIGHT_KEY + "B";
private static final List WEIGHT_KEYS = Collections.unmodifiableList(Arrays.asList(INPUT_WEIGHT_KEY_FORWARDS,
INPUT_WEIGHT_KEY_BACKWARDS, RECURRENT_WEIGHT_KEY_FORWARDS, RECURRENT_WEIGHT_KEY_BACKWARDS));
private static final List BIAS_KEYS = Collections.unmodifiableList(Arrays.asList(BIAS_KEY_FORWARDS, BIAS_KEY_BACKWARDS));
private static final List ALL_PARAM_KEYS = Collections.unmodifiableList(Arrays.asList(INPUT_WEIGHT_KEY_FORWARDS,
INPUT_WEIGHT_KEY_BACKWARDS, RECURRENT_WEIGHT_KEY_FORWARDS, RECURRENT_WEIGHT_KEY_BACKWARDS, BIAS_KEY_FORWARDS,
BIAS_KEY_BACKWARDS));
@Override
public long numParams(NeuralNetConfiguration conf) {
return numParams(conf.getLayer());
}
@Override
public long numParams(Layer l) {
org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM layerConf =
(org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM) l;
val nL = layerConf.getNOut(); //i.e., n neurons in this layer
val nLast = layerConf.getNIn(); //i.e., n neurons in previous layer
val nParamsForward = nLast * (4 * nL) //"input" weights
+ nL * (4 * nL + 3) //recurrent weights
+ 4 * nL; //bias
return 2 * nParamsForward;
}
@Override
public List paramKeys(Layer layer) {
return ALL_PARAM_KEYS;
}
@Override
public List weightKeys(Layer layer) {
return WEIGHT_KEYS;
}
@Override
public List biasKeys(Layer layer) {
return BIAS_KEYS;
}
@Override
public boolean isWeightParam(Layer layer, String key) {
return RECURRENT_WEIGHT_KEY_FORWARDS.equals(key) || INPUT_WEIGHT_KEY_FORWARDS.equals(key)
|| RECURRENT_WEIGHT_KEY_BACKWARDS.equals(key) || INPUT_WEIGHT_KEY_BACKWARDS.equals(key);
}
@Override
public boolean isBiasParam(Layer layer, String key) {
return BIAS_KEY_FORWARDS.equals(key) || BIAS_KEY_BACKWARDS.equals(key);
}
@Override
public Map init(NeuralNetConfiguration conf, INDArray paramsView, boolean initializeParams) {
Map params = Collections.synchronizedMap(new LinkedHashMap());
org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM layerConf =
(org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM) conf.getLayer();
double forgetGateInit = layerConf.getForgetGateBiasInit();
val nL = layerConf.getNOut(); //i.e., n neurons in this layer
val nLast = layerConf.getNIn(); //i.e., n neurons in previous layer
conf.addVariable(INPUT_WEIGHT_KEY_FORWARDS);
conf.addVariable(RECURRENT_WEIGHT_KEY_FORWARDS);
conf.addVariable(BIAS_KEY_FORWARDS);
conf.addVariable(INPUT_WEIGHT_KEY_BACKWARDS);
conf.addVariable(RECURRENT_WEIGHT_KEY_BACKWARDS);
conf.addVariable(BIAS_KEY_BACKWARDS);
val nParamsInput = nLast * (4 * nL);
val nParamsRecurrent = nL * (4 * nL + 3);
val nBias = 4 * nL;
val rwFOffset = nParamsInput;
val bFOffset = rwFOffset + nParamsRecurrent;
val iwROffset = bFOffset + nBias;
val rwROffset = iwROffset + nParamsInput;
val bROffset = rwROffset + nParamsRecurrent;
INDArray paramsViewReshape = paramsView.reshape(paramsView.length());
INDArray iwF = paramsViewReshape.get(NDArrayIndex.interval(0, rwFOffset));
INDArray rwF = paramsViewReshape.get(NDArrayIndex.interval(rwFOffset, bFOffset));
INDArray bF = paramsViewReshape.get(NDArrayIndex.interval(bFOffset, iwROffset));
INDArray iwR = paramsViewReshape.get(NDArrayIndex.interval(iwROffset, rwROffset));
INDArray rwR = paramsViewReshape.get(NDArrayIndex.interval(rwROffset, bROffset));
INDArray bR = paramsViewReshape.get(NDArrayIndex.interval(bROffset, bROffset + nBias));
if (initializeParams) {
bF.put(new INDArrayIndex[]{NDArrayIndex.interval(nL, 2 * nL)},
Nd4j.ones(1, nL).muli(forgetGateInit)); //Order: input, forget, output, input modulation, i.e., IFOG
bR.put(new INDArrayIndex[]{NDArrayIndex.interval(nL, 2 * nL)},
Nd4j.ones(1, nL).muli(forgetGateInit));
}
/*The above line initializes the forget gate biases to specified value.
* See Sutskever PhD thesis, pg19:
* "it is important for [the forget gate activations] to be approximately 1 at the early stages of learning,
* which is accomplished by initializing [the forget gate biases] to a large value (such as 5). If it is
* not done, it will be harder to learn long range dependencies because the smaller values of the forget
* gates will create a vanishing gradients problem."
* http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
*/
if (initializeParams) {
//As per standard LSTM
val fanIn = nL;
val fanOut = nLast + nL;
val inputWShape = new long[]{nLast, 4 * nL};
val recurrentWShape = new long[]{nL, 4 * nL + 3};
params.put(INPUT_WEIGHT_KEY_FORWARDS, layerConf.getWeightInitFn().init(fanIn, fanOut, inputWShape,
IWeightInit.DEFAULT_WEIGHT_INIT_ORDER, iwF));
params.put(RECURRENT_WEIGHT_KEY_FORWARDS, layerConf.getWeightInitFn().init(fanIn, fanOut, recurrentWShape,
IWeightInit.DEFAULT_WEIGHT_INIT_ORDER, rwF));
params.put(BIAS_KEY_FORWARDS, bF);
params.put(INPUT_WEIGHT_KEY_BACKWARDS, layerConf.getWeightInitFn().init(fanIn, fanOut, inputWShape,
IWeightInit.DEFAULT_WEIGHT_INIT_ORDER, iwR));
params.put(RECURRENT_WEIGHT_KEY_BACKWARDS, layerConf.getWeightInitFn().init(fanIn, fanOut, recurrentWShape,
IWeightInit.DEFAULT_WEIGHT_INIT_ORDER, rwR));
params.put(BIAS_KEY_BACKWARDS, bR);
} else {
params.put(INPUT_WEIGHT_KEY_FORWARDS, WeightInitUtil.reshapeWeights(new long[]{nLast, 4 * nL}, iwF));
params.put(RECURRENT_WEIGHT_KEY_FORWARDS, WeightInitUtil.reshapeWeights(new long[]{nL, 4 * nL + 3}, rwF));
params.put(BIAS_KEY_FORWARDS, bF);
params.put(INPUT_WEIGHT_KEY_BACKWARDS, WeightInitUtil.reshapeWeights(new long[]{nLast, 4 * nL}, iwR));
params.put(RECURRENT_WEIGHT_KEY_BACKWARDS, WeightInitUtil.reshapeWeights(new long[]{nL, 4 * nL + 3}, rwR));
params.put(BIAS_KEY_BACKWARDS, bR);
}
return params;
}
@Override
public Map getGradientsFromFlattened(NeuralNetConfiguration conf, INDArray gradientView) {
org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM layerConf =
(org.deeplearning4j.nn.conf.layers.GravesBidirectionalLSTM) conf.getLayer();
val nL = layerConf.getNOut(); //i.e., n neurons in this layer
val nLast = layerConf.getNIn(); //i.e., n neurons in previous layer
val nParamsInput = nLast * (4 * nL);
val nParamsRecurrent = nL * (4 * nL + 3);
val nBias = 4 * nL;
val rwFOffset = nParamsInput;
val bFOffset = rwFOffset + nParamsRecurrent;
val iwROffset = bFOffset + nBias;
val rwROffset = iwROffset + nParamsInput;
val bROffset = rwROffset + nParamsRecurrent;
INDArray gradientViewReshape = gradientView.reshape(gradientView.length());
INDArray iwFG = gradientViewReshape.get(NDArrayIndex.interval(0, rwFOffset)).reshape('f', nLast,
4 * nL);
INDArray rwFG = gradientViewReshape.get(NDArrayIndex.interval(rwFOffset, bFOffset)).reshape('f',
nL, 4 * nL + 3);
INDArray bFG = gradientViewReshape.get(NDArrayIndex.interval(bFOffset, iwROffset));
INDArray iwRG = gradientViewReshape.get(NDArrayIndex.interval(iwROffset, rwROffset))
.reshape('f', nLast, 4 * nL);
INDArray rwRG = gradientViewReshape.get(NDArrayIndex.interval(rwROffset, bROffset)).reshape('f',
nL, 4 * nL + 3);
INDArray bRG = gradientViewReshape.get(NDArrayIndex.interval(bROffset, bROffset + nBias));
Map out = new LinkedHashMap<>();
out.put(INPUT_WEIGHT_KEY_FORWARDS, iwFG);
out.put(RECURRENT_WEIGHT_KEY_FORWARDS, rwFG);
out.put(BIAS_KEY_FORWARDS, bFG);
out.put(INPUT_WEIGHT_KEY_BACKWARDS, iwRG);
out.put(RECURRENT_WEIGHT_KEY_BACKWARDS, rwRG);
out.put(BIAS_KEY_BACKWARDS, bRG);
return out;
}
}