org.deeplearning4j.nn.params.WrapperLayerParamInitializer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.params;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.Layer;
import org.deeplearning4j.nn.conf.layers.wrapper.BaseWrapperLayer;
import org.nd4j.linalg.api.ndarray.INDArray;
import java.util.List;
import java.util.Map;
public class WrapperLayerParamInitializer implements ParamInitializer {
private static final WrapperLayerParamInitializer INSTANCE = new WrapperLayerParamInitializer();
public static WrapperLayerParamInitializer getInstance(){
return INSTANCE;
}
private WrapperLayerParamInitializer(){
}
@Override
public long numParams(NeuralNetConfiguration conf) {
return numParams(conf.getLayer());
}
@Override
public long numParams(Layer layer) {
Layer l = underlying(layer);
return l.initializer().numParams(l);
}
@Override
public List paramKeys(Layer layer) {
Layer l = underlying(layer);
return l.initializer().paramKeys(l);
}
@Override
public List weightKeys(Layer layer) {
Layer l = underlying(layer);
return l.initializer().weightKeys(l);
}
@Override
public List biasKeys(Layer layer) {
Layer l = underlying(layer);
return l.initializer().biasKeys(l);
}
@Override
public boolean isWeightParam(Layer layer, String key) {
Layer l = underlying(layer);
return l.initializer().isWeightParam(layer, key);
}
@Override
public boolean isBiasParam(Layer layer, String key) {
Layer l = underlying(layer);
return l.initializer().isBiasParam(layer, key);
}
@Override
public Map init(NeuralNetConfiguration conf, INDArray paramsView, boolean initializeParams) {
Layer orig = conf.getLayer();
Layer l = underlying(conf.getLayer());
conf.setLayer(l);
Map m = l.initializer().init(conf, paramsView, initializeParams);
conf.setLayer(orig);
return m;
}
@Override
public Map getGradientsFromFlattened(NeuralNetConfiguration conf, INDArray gradientView) {
Layer orig = conf.getLayer();
Layer l = underlying(conf.getLayer());
conf.setLayer(l);
Map m = l.initializer().getGradientsFromFlattened(conf, gradientView);
conf.setLayer(orig);
return m;
}
private Layer underlying(Layer layer){
while (layer instanceof BaseWrapperLayer) {
layer = ((BaseWrapperLayer)layer).getUnderlying();
}
return layer;
}
}