org.deeplearning4j.nn.weights.WeightInitVarScalingNormalFanAvg Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.nn.weights;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.NoArgsConstructor;
import org.apache.commons.math3.util.FastMath;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ops.random.impl.TruncatedNormalDistribution;
import org.nd4j.linalg.factory.Nd4j;
@Data
@NoArgsConstructor
public class WeightInitVarScalingNormalFanAvg implements IWeightInit {
private Double scale;
public WeightInitVarScalingNormalFanAvg(Double scale){
this.scale = scale;
}
@Override
public INDArray init(double fanIn, double fanOut, long[] shape, char order, INDArray paramView) {
double std;
if(scale == null){
std = Math.sqrt(2.0 / (fanIn + fanOut));
} else {
std = Math.sqrt(2.0 * scale / (fanIn + fanOut));
}
Nd4j.exec(new TruncatedNormalDistribution(paramView, 0.0, std));
return paramView.reshape(order, shape);
}
}