All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.optimize.api.ConvexOptimizer Maven / Gradle / Ivy

/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.deeplearning4j.optimize.api;

import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.Updater;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.common.primitives.Pair;

import java.io.Serializable;
import java.util.Collection;

public interface ConvexOptimizer extends Serializable {
    /**
     * The score for the optimizer so far
     * @return the score for this optimizer so far
     */
    double score();

    Updater getUpdater();

    Updater getUpdater(boolean initializeIfReq);

    ComputationGraphUpdater getComputationGraphUpdater();

    ComputationGraphUpdater getComputationGraphUpdater(boolean initializeIfReq);

    void setUpdater(Updater updater);

    void setUpdaterComputationGraph(ComputationGraphUpdater updater);

    void setListeners(Collection listeners);

    /**
     * This method specifies GradientsAccumulator instance to be used for updates sharing across multiple models
     *
     * @param accumulator
     */
    void setGradientsAccumulator(GradientsAccumulator accumulator);

    /**
     * This method returns StepFunction defined within this Optimizer instance
     * @return
     */
    StepFunction getStepFunction();

    /**
     * This method returns GradientsAccumulator instance used in this optimizer.
     *
     * This method can return null.
     * @return
     */
    GradientsAccumulator getGradientsAccumulator();

    NeuralNetConfiguration getConf();

    /**
     * The gradient and score for this optimizer
     * @return the gradient and score for this optimizer
     */
    Pair gradientAndScore(LayerWorkspaceMgr workspaceMgr);

    /**
     * Calls optimize
     * @return whether the convex optimizer
     * converted or not
     */
    boolean optimize(LayerWorkspaceMgr workspaceMgr);


    /**
     * The batch size for the optimizer
     * @return
     */
    int batchSize();

    /**
     * Set the batch size for the optimizer
     * @param batchSize
     */
    void setBatchSize(int batchSize);

    /**
     * Pre preProcess a line before an iteration
     */
    void preProcessLine();

    /**
     * After the step has been made, do an action
     * @param line
     * */
    void postStep(INDArray line);

    /**
     * Based on the gradient and score
     * setup a search state
     * @param pair the gradient and score
     */
    void setupSearchState(Pair pair);

    /**
     * Update the gradient according to the configuration such as adagrad, momentum, and sparsity
     * @param gradient the gradient to modify
     * @param model the model with the parameters to update
     * @param batchSize batchSize for update
     * @paramType paramType to update
     */
    void updateGradientAccordingToParams(Gradient gradient, Model model, int batchSize, LayerWorkspaceMgr workspaceMgr);

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy