org.deeplearning4j.optimize.api.ConvexOptimizer Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.optimize.api;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.Updater;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.updater.graph.ComputationGraphUpdater;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.deeplearning4j.optimize.solvers.accumulation.GradientsAccumulator;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.common.primitives.Pair;
import java.io.Serializable;
import java.util.Collection;
public interface ConvexOptimizer extends Serializable {
/**
* The score for the optimizer so far
* @return the score for this optimizer so far
*/
double score();
Updater getUpdater();
Updater getUpdater(boolean initializeIfReq);
ComputationGraphUpdater getComputationGraphUpdater();
ComputationGraphUpdater getComputationGraphUpdater(boolean initializeIfReq);
void setUpdater(Updater updater);
void setUpdaterComputationGraph(ComputationGraphUpdater updater);
void setListeners(Collection listeners);
/**
* This method specifies GradientsAccumulator instance to be used for updates sharing across multiple models
*
* @param accumulator
*/
void setGradientsAccumulator(GradientsAccumulator accumulator);
/**
* This method returns StepFunction defined within this Optimizer instance
* @return
*/
StepFunction getStepFunction();
/**
* This method returns GradientsAccumulator instance used in this optimizer.
*
* This method can return null.
* @return
*/
GradientsAccumulator getGradientsAccumulator();
NeuralNetConfiguration getConf();
/**
* The gradient and score for this optimizer
* @return the gradient and score for this optimizer
*/
Pair gradientAndScore(LayerWorkspaceMgr workspaceMgr);
/**
* Calls optimize
* @return whether the convex optimizer
* converted or not
*/
boolean optimize(LayerWorkspaceMgr workspaceMgr);
/**
* The batch size for the optimizer
* @return
*/
int batchSize();
/**
* Set the batch size for the optimizer
* @param batchSize
*/
void setBatchSize(int batchSize);
/**
* Pre preProcess a line before an iteration
*/
void preProcessLine();
/**
* After the step has been made, do an action
* @param line
* */
void postStep(INDArray line);
/**
* Based on the gradient and score
* setup a search state
* @param pair the gradient and score
*/
void setupSearchState(Pair pair);
/**
* Update the gradient according to the configuration such as adagrad, momentum, and sparsity
* @param gradient the gradient to modify
* @param model the model with the parameters to update
* @param batchSize batchSize for update
* @paramType paramType to update
*/
void updateGradientAccordingToParams(Gradient gradient, Model model, int batchSize, LayerWorkspaceMgr workspaceMgr);
}