All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.optimize.solvers.LineGradientDescent Maven / Gradle / Ivy

/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.deeplearning4j.optimize.solvers;

import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.optimize.api.StepFunction;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;

import java.util.Collection;

public class LineGradientDescent extends BaseOptimizer {
    private static final long serialVersionUID = 6336124657542062284L;

    public LineGradientDescent(NeuralNetConfiguration conf, StepFunction stepFunction,
                    Collection trainingListeners, Model model) {
        super(conf, stepFunction, trainingListeners, model);
    }

    @Override
    public void preProcessLine() {
        INDArray gradient = (INDArray) searchState.get(GRADIENT_KEY);
        searchState.put(SEARCH_DIR, gradient.dup());
    }

    @Override
    public void postStep(INDArray gradient) {
        double norm2 = Nd4j.getBlasWrapper().level1().nrm2(gradient);
        if (norm2 > stepMax)
            searchState.put(SEARCH_DIR, gradient.dup().muli(stepMax / norm2));
        else
            searchState.put(SEARCH_DIR, gradient.dup());
        searchState.put(GRADIENT_KEY, gradient.dup());
    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy