org.deeplearning4j.preprocessors.KerasFlattenRnnPreprocessor Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.preprocessors;
import lombok.Data;
import lombok.extern.slf4j.Slf4j;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.conf.preprocessor.BaseInputPreProcessor;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.shade.jackson.annotation.JsonProperty;
@Slf4j
@Data
public class KerasFlattenRnnPreprocessor extends BaseInputPreProcessor {
private long tsLength;
private long depth;
public KerasFlattenRnnPreprocessor(@JsonProperty("depth") long depth, @JsonProperty("tsLength") long tsLength) {
super();
this.tsLength = Math.abs(tsLength);
this.depth = depth;
}
@Override
public INDArray preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) {
INDArray output = workspaceMgr.dup(ArrayType.ACTIVATIONS, input, 'c');
return output.reshape(input.size(0), depth * tsLength);
}
@Override
public INDArray backprop(INDArray epsilons, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) {
return workspaceMgr.dup(ArrayType.ACTIVATION_GRAD, epsilons, 'c').reshape(miniBatchSize, depth, tsLength);
}
@Override
public KerasFlattenRnnPreprocessor clone() {
return (KerasFlattenRnnPreprocessor) super.clone();
}
@Override
public InputType getOutputType(InputType inputType) throws InvalidInputTypeException {
return InputType.feedForward(depth * tsLength);
}
}