org.deeplearning4j.preprocessors.PermutePreprocessor Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.preprocessors;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.extern.slf4j.Slf4j;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.conf.preprocessor.BaseInputPreProcessor;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.shade.jackson.annotation.JsonIgnoreProperties;
import org.nd4j.shade.jackson.annotation.JsonProperty;
@Data
@Slf4j
@EqualsAndHashCode(callSuper = false)
@JsonIgnoreProperties({"hasLeadingDimension"})
public class PermutePreprocessor extends BaseInputPreProcessor {
private int[] permutationIndices;
private boolean hasLeadingDimension = false;
public PermutePreprocessor(@JsonProperty("permutationIndices") int... permutationIndices) {
this.permutationIndices = permutationIndices;
}
private static int[] prependZero(int[] shape) {
int shapeLength = shape.length;
int[] augmentedShape = new int[shapeLength + 1];
for (int i = 0; i < augmentedShape.length; i++) {
if (i == 0)
augmentedShape[i] = 0;
else
augmentedShape[i] = shape[i - 1];
}
return augmentedShape;
}
@Override
public INDArray preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) {
if (permutationIndices.length + 1 == input.shape().length) {
permutationIndices = prependZero(permutationIndices);
this.hasLeadingDimension = true;
}
if (input.ordering() != 'c' || !Shape.hasDefaultStridesForShape(input)) {
input = workspaceMgr.dup(ArrayType.ACTIVATIONS, input, 'c');
}
INDArray output = workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, input.permute(this.permutationIndices));
return output;
}
@Override
public INDArray backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) {
if (output.ordering() != 'c' || !Shape.hasDefaultStridesForShape(output)) {
output = workspaceMgr.dup(ArrayType.ACTIVATIONS, output, 'c');
}
return workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, output.permute(permutationIndices));
}
@Override
public InputType getOutputType(InputType inputType) throws InvalidInputTypeException {
if (inputType instanceof InputType.InputTypeConvolutional) {
InputType.InputTypeConvolutional it = (InputType.InputTypeConvolutional) inputType;
return InputType.convolutional(it.getWidth(), it.getHeight(), it.getChannels());
} else if (inputType instanceof InputType.InputTypeRecurrent) {
InputType.InputTypeRecurrent it = (InputType.InputTypeRecurrent) inputType;
return InputType.recurrent(it.getTimeSeriesLength(), it.getSize());
} else if (inputType instanceof InputType.InputTypeFeedForward || inputType instanceof InputType.InputTypeConvolutional3D) {
return inputType;
} else {
throw new InvalidInputTypeException("Unsupported Input type " + inputType);
}
}
}