All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.preprocessors.PermutePreprocessor Maven / Gradle / Ivy

/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.deeplearning4j.preprocessors;

import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.extern.slf4j.Slf4j;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.inputs.InvalidInputTypeException;
import org.deeplearning4j.nn.conf.preprocessor.BaseInputPreProcessor;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.shade.jackson.annotation.JsonIgnoreProperties;
import org.nd4j.shade.jackson.annotation.JsonProperty;


@Data
@Slf4j
@EqualsAndHashCode(callSuper = false)
@JsonIgnoreProperties({"hasLeadingDimension"})
public class PermutePreprocessor extends BaseInputPreProcessor {

    private int[] permutationIndices;
    private boolean hasLeadingDimension = false;

    public PermutePreprocessor(@JsonProperty("permutationIndices") int... permutationIndices) {
        this.permutationIndices = permutationIndices;
    }


    private static int[] prependZero(int[] shape) {
        int shapeLength = shape.length;
        int[] augmentedShape = new int[shapeLength + 1];
        for (int i = 0; i < augmentedShape.length; i++) {
            if (i == 0)
                augmentedShape[i] = 0;
            else
                augmentedShape[i] = shape[i - 1];
        }
        return augmentedShape;
    }

    @Override
    public INDArray preProcess(INDArray input, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) {
        if (permutationIndices.length + 1 == input.shape().length) {
            permutationIndices = prependZero(permutationIndices);
            this.hasLeadingDimension = true;
        }
        if (input.ordering() != 'c' || !Shape.hasDefaultStridesForShape(input)) {
            input = workspaceMgr.dup(ArrayType.ACTIVATIONS, input, 'c');
        }
        INDArray output = workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, input.permute(this.permutationIndices));
        return output;
    }

    @Override
    public INDArray backprop(INDArray output, int miniBatchSize, LayerWorkspaceMgr workspaceMgr) {
        if (output.ordering() != 'c' || !Shape.hasDefaultStridesForShape(output)) {
            output = workspaceMgr.dup(ArrayType.ACTIVATIONS, output, 'c');
        }
        return workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, output.permute(permutationIndices));

    }

    @Override
    public InputType getOutputType(InputType inputType) throws InvalidInputTypeException {
        if (inputType instanceof InputType.InputTypeConvolutional) {
            InputType.InputTypeConvolutional it = (InputType.InputTypeConvolutional) inputType;
            return InputType.convolutional(it.getWidth(), it.getHeight(), it.getChannels());
        } else if (inputType instanceof InputType.InputTypeRecurrent) {
            InputType.InputTypeRecurrent it = (InputType.InputTypeRecurrent) inputType;
            return InputType.recurrent(it.getTimeSeriesLength(), it.getSize());
        } else if (inputType instanceof InputType.InputTypeFeedForward || inputType instanceof InputType.InputTypeConvolutional3D) {
            return inputType;
        } else {
            throw new InvalidInputTypeException("Unsupported Input type " + inputType);
        }
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy