All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.conf.layers.PReLULayer Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.deeplearning4j.nn.conf.layers;

import lombok.*;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.memory.LayerMemoryReport;
import org.deeplearning4j.nn.conf.memory.MemoryReport;
import org.deeplearning4j.nn.params.PReLUParamInitializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.nd4j.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;

import java.util.Collection;
import java.util.Map;

/**
 * Parametrized Rectified Linear Unit (PReLU)
 * 

* {@code f(x) = alpha * x for x < 0, f(x) = x for x >= 0} *

* alpha has the same shape as x and is a learned parameter. * * @author Max Pumperla */ @Data @NoArgsConstructor @ToString(callSuper = true) @EqualsAndHashCode(callSuper = true) public class PReLULayer extends BaseLayer { private long[] inputShape = null; private long[] sharedAxes = null; private int nIn; private int nOut; private PReLULayer(Builder builder) { super(builder); this.inputShape = builder.inputShape; this.sharedAxes = builder.sharedAxes; initializeConstraints(builder); } @Override public Layer instantiate(NeuralNetConfiguration conf, Collection trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) { org.deeplearning4j.nn.layers.feedforward.PReLU ret = new org.deeplearning4j.nn.layers.feedforward.PReLU(conf, networkDataType); ret.setListeners(trainingListeners); ret.setIndex(layerIndex); ret.setParamsViewArray(layerParamsView); Map paramTable = initializer().init(conf, layerParamsView, initializeParams); ret.setParamTable(paramTable); ret.setConf(conf); return ret; } @Override public InputType getOutputType(int layerIndex, InputType inputType) { if (inputType == null) { throw new IllegalStateException("Invalid input type: null for layer name \"" + getLayerName() + "\""); } return inputType; } @Override public void setNIn(InputType inputType, boolean override) { // not needed } @Override public InputPreProcessor getPreProcessorForInputType(InputType inputType) { // None needed return null; } @Override public boolean isPretrainParam(String paramName) { return false; } @Override public ParamInitializer initializer() { return PReLUParamInitializer.getInstance(inputShape, sharedAxes); } @Override public LayerMemoryReport getMemoryReport(InputType inputType) { InputType outputType = getOutputType(-1, inputType); val numParams = initializer().numParams(this); val updaterStateSize = (int) getIUpdater().stateSize(numParams); return new LayerMemoryReport.Builder(layerName, PReLULayer.class, inputType, outputType) .standardMemory(numParams, updaterStateSize).workingMemory(0, 0, 0, 0) .cacheMemory(MemoryReport.CACHE_MODE_ALL_ZEROS, MemoryReport.CACHE_MODE_ALL_ZEROS).build(); } @NoArgsConstructor @Getter @Setter public static class Builder extends FeedForwardLayer.Builder { /** * Explicitly set input shape of incoming activations so that parameters can be initialized properly. This * explicitly excludes the mini-batch dimension. * */ private long[] inputShape = null; /** * Set the broadcasting axes of PReLU's alpha parameter. * * For instance, given input data of shape [mb, channels, height, width], setting axes to [2,3] will set alpha * to shape [channels, 1, 1] and broadcast alpha across height and width dimensions of each channel. * */ private long[] sharedAxes = null; /** * Explicitly set input shape of incoming activations so that parameters can be initialized properly. This * explicitly excludes the mini-batch dimension. * * @param shape shape of input data */ public Builder inputShape(long... shape) { this.setInputShape(shape); return this; } /** * Set the broadcasting axes of PReLU's alpha parameter. * * For instance, given input data of shape [mb, channels, height, width], setting axes to [2,3] will set alpha * to shape [channels, 1, 1] and broadcast alpha across height and width dimensions of each channel. * * @param axes shared/broadcasting axes * @return Builder */ public Builder sharedAxes(long... axes) { this.setSharedAxes(axes); return this; } @Override @SuppressWarnings("unchecked") public PReLULayer build() { return new PReLULayer(this); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy