All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.conf.layers.RnnOutputLayer Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.deeplearning4j.nn.conf.layers;

import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.NoArgsConstructor;
import lombok.ToString;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.params.DefaultParamInitializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.nd4j.linalg.activations.impl.ActivationSoftmax;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction;

import java.util.Collection;
import java.util.Map;

/**
 * A version of {@link OutputLayer} for recurrent neural networks. Expects inputs of size [minibatch,nIn,sequenceLength]
 * and labels of shape [minibatch,nOut,sequenceLength]. It also supports mask arrays.
 * 
* Note that RnnOutputLayer can also be used for 1D CNN layers, which also have [minibatch,nOut,sequenceLength] * activations/labels shape. * * See also: {@link RnnLossLayer} */ @Data @NoArgsConstructor @ToString(callSuper = true) @EqualsAndHashCode(callSuper = true) public class RnnOutputLayer extends BaseOutputLayer { private RnnOutputLayer(Builder builder) { super(builder); initializeConstraints(builder); } @Override public Layer instantiate(NeuralNetConfiguration conf, Collection trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) { LayerValidation.assertNInNOutSet("RnnOutputLayer", getLayerName(), layerIndex, getNIn(), getNOut()); org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer ret = new org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer(conf, networkDataType); ret.setListeners(trainingListeners); ret.setIndex(layerIndex); ret.setParamsViewArray(layerParamsView); Map paramTable = initializer().init(conf, layerParamsView, initializeParams); ret.setParamTable(paramTable); ret.setConf(conf); return ret; } @Override public ParamInitializer initializer() { return DefaultParamInitializer.getInstance(); } @Override public InputType getOutputType(int layerIndex, InputType inputType) { if (inputType == null || inputType.getType() != InputType.Type.RNN) { throw new IllegalStateException("Invalid input type for RnnOutputLayer (layer index = " + layerIndex + ", layer name=\"" + getLayerName() + "\"): Expected RNN input, got " + inputType); } InputType.InputTypeRecurrent itr = (InputType.InputTypeRecurrent) inputType; return InputType.recurrent(nOut, itr.getTimeSeriesLength()); } @Override public void setNIn(InputType inputType, boolean override) { if (inputType == null || inputType.getType() != InputType.Type.RNN) { throw new IllegalStateException("Invalid input type for RnnOutputLayer (layer name=\"" + getLayerName() + "\"): Expected RNN input, got " + inputType); } if (nIn <= 0 || override) { InputType.InputTypeRecurrent r = (InputType.InputTypeRecurrent) inputType; this.nIn = r.getSize(); } } @Override public InputPreProcessor getPreProcessorForInputType(InputType inputType) { return InputTypeUtil.getPreprocessorForInputTypeRnnLayers(inputType, getLayerName()); } public static class Builder extends BaseOutputLayer.Builder { public Builder() { //Set default activation function to softmax (to match default loss function MCXENT) this.setActivationFn(new ActivationSoftmax()); } /** * @param lossFunction Loss function for the output layer */ public Builder(LossFunction lossFunction) { lossFunction(lossFunction); //Set default activation function to softmax (for consistent behaviour with no-arg constructor) this.setActivationFn(new ActivationSoftmax()); } /** * @param lossFunction Loss function for the output layer */ public Builder(ILossFunction lossFunction) { this.setLossFn(lossFunction); //Set default activation function to softmax (for consistent behaviour with no-arg constructor) this.setActivationFn(new ActivationSoftmax()); } @Override @SuppressWarnings("unchecked") public RnnOutputLayer build() { return new RnnOutputLayer(this); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy