org.deeplearning4j.nn.conf.layers.RnnOutputLayer Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.nn.conf.layers;
import lombok.Data;
import lombok.EqualsAndHashCode;
import lombok.NoArgsConstructor;
import lombok.ToString;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.ParamInitializer;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.params.DefaultParamInitializer;
import org.deeplearning4j.optimize.api.TrainingListener;
import org.nd4j.linalg.activations.impl.ActivationSoftmax;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction;
import java.util.Collection;
import java.util.Map;
/**
* A version of {@link OutputLayer} for recurrent neural networks. Expects inputs of size [minibatch,nIn,sequenceLength]
* and labels of shape [minibatch,nOut,sequenceLength]. It also supports mask arrays.
*
* Note that RnnOutputLayer can also be used for 1D CNN layers, which also have [minibatch,nOut,sequenceLength]
* activations/labels shape.
*
* See also: {@link RnnLossLayer}
*/
@Data
@NoArgsConstructor
@ToString(callSuper = true)
@EqualsAndHashCode(callSuper = true)
public class RnnOutputLayer extends BaseOutputLayer {
private RnnOutputLayer(Builder builder) {
super(builder);
initializeConstraints(builder);
}
@Override
public Layer instantiate(NeuralNetConfiguration conf, Collection trainingListeners,
int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) {
LayerValidation.assertNInNOutSet("RnnOutputLayer", getLayerName(), layerIndex, getNIn(), getNOut());
org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer ret =
new org.deeplearning4j.nn.layers.recurrent.RnnOutputLayer(conf, networkDataType);
ret.setListeners(trainingListeners);
ret.setIndex(layerIndex);
ret.setParamsViewArray(layerParamsView);
Map paramTable = initializer().init(conf, layerParamsView, initializeParams);
ret.setParamTable(paramTable);
ret.setConf(conf);
return ret;
}
@Override
public ParamInitializer initializer() {
return DefaultParamInitializer.getInstance();
}
@Override
public InputType getOutputType(int layerIndex, InputType inputType) {
if (inputType == null || inputType.getType() != InputType.Type.RNN) {
throw new IllegalStateException("Invalid input type for RnnOutputLayer (layer index = " + layerIndex
+ ", layer name=\"" + getLayerName() + "\"): Expected RNN input, got " + inputType);
}
InputType.InputTypeRecurrent itr = (InputType.InputTypeRecurrent) inputType;
return InputType.recurrent(nOut, itr.getTimeSeriesLength());
}
@Override
public void setNIn(InputType inputType, boolean override) {
if (inputType == null || inputType.getType() != InputType.Type.RNN) {
throw new IllegalStateException("Invalid input type for RnnOutputLayer (layer name=\"" + getLayerName()
+ "\"): Expected RNN input, got " + inputType);
}
if (nIn <= 0 || override) {
InputType.InputTypeRecurrent r = (InputType.InputTypeRecurrent) inputType;
this.nIn = r.getSize();
}
}
@Override
public InputPreProcessor getPreProcessorForInputType(InputType inputType) {
return InputTypeUtil.getPreprocessorForInputTypeRnnLayers(inputType, getLayerName());
}
public static class Builder extends BaseOutputLayer.Builder {
public Builder() {
//Set default activation function to softmax (to match default loss function MCXENT)
this.setActivationFn(new ActivationSoftmax());
}
/**
* @param lossFunction Loss function for the output layer
*/
public Builder(LossFunction lossFunction) {
lossFunction(lossFunction);
//Set default activation function to softmax (for consistent behaviour with no-arg constructor)
this.setActivationFn(new ActivationSoftmax());
}
/**
* @param lossFunction Loss function for the output layer
*/
public Builder(ILossFunction lossFunction) {
this.setLossFn(lossFunction);
//Set default activation function to softmax (for consistent behaviour with no-arg constructor)
this.setActivationFn(new ActivationSoftmax());
}
@Override
@SuppressWarnings("unchecked")
public RnnOutputLayer build() {
return new RnnOutputLayer(this);
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy