org.deeplearning4j.nn.layers.convolution.CnnLossLayer Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.nn.layers.convolution;
import lombok.Getter;
import lombok.Setter;
import lombok.val;
import org.deeplearning4j.eval.Evaluation;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.api.layers.IOutputLayer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.BaseLayer;
import org.deeplearning4j.util.ConvolutionUtils;
import org.nd4j.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.api.DataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.primitives.Pair;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.nd4j.linalg.util.ArrayUtil;
import java.util.Arrays;
import java.util.List;
/**
* Convolutional Neural Network Loss Layer.
* Handles calculation of gradients etc for various objective functions.
* NOTE: CnnLossLayer does not have any parameters. Consequently, the output activations size is equal to the input size.
* Input and output activations are same as other CNN layers: 4 dimensions with shape [miniBatchSize,channels,height,width]
* CnnLossLayer has support for a built-in activation function (tanh, softmax etc) - if this is not required, set
* activation function to Activation.IDENTITY. For activations such as softmax, note that this is applied channels-wise:
* that is, softmax is applied along dimension 1 (channels) for each minibatch, and x/y location separately.
*
* Note that 3 types of masking are supported: (n=minibatchSize, c=channels, h=height, w=width)
* - Per example masking: Where an example is present or not (and all outputs are masked by it). Mask shape [n,1]
* - Per x/y location masking: where each spatial X/Y location is present or not (all channels at a given x/y are masked by it).
* Mask shape: [n,h,w].
* - Per output masking: Where each output activation value is present or not - mask shape [n,c,h,w] (same as output)
*
* @author Alex Black
*/
public class CnnLossLayer extends BaseLayer implements IOutputLayer {
@Setter
@Getter
protected INDArray labels;
public CnnLossLayer(NeuralNetConfiguration conf, DataType dataType) {
super(conf, dataType);
}
@Override
public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(true);
if (input.rank() != 4)
throw new UnsupportedOperationException(
"Input is not rank 4. Got input with rank " + input.rank() + " " + layerId() + " with shape "
+ Arrays.toString(input.shape()) + " - expected shape [minibatch,channels,height,width]");
if (labels == null)
throw new IllegalStateException("Labels are not set (null)");
Preconditions.checkState(input.equalShapes(labels), "Input and label arrays do not have same shape: %ndShape vs. %ndShape",input, labels);
INDArray input2d = ConvolutionUtils.reshape4dTo2d(input, workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray labels2d = ConvolutionUtils.reshape4dTo2d(labels, workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray maskReshaped = ConvolutionUtils.reshapeMaskIfRequired(maskArray, input, workspaceMgr, ArrayType.FF_WORKING_MEM);
// delta calculation
ILossFunction lossFunction = layerConf().getLossFn();
INDArray delta2d = lossFunction.computeGradient(labels2d, input2d.dup(input2d.ordering()), layerConf().getActivationFn(), maskReshaped);
delta2d = workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, delta2d);
// FIXME: int cast
INDArray delta4d = ConvolutionUtils.reshape2dTo4d(delta2d, ArrayUtil.toInts(input.shape()), workspaceMgr, ArrayType.ACTIVATION_GRAD);
// grab the empty gradient
Gradient gradient = new DefaultGradient();
return new Pair<>(gradient, delta4d);
}
@Override
public double calcRegularizationScore(boolean backpropParamsOnly){
return 0;
}
@Override
public double f1Score(DataSet data) {
return 0;
}
/**
* {@inheritDoc}
*/
@Override
public double f1Score(INDArray examples, INDArray labels) {
INDArray out = activate(examples, false, null); //TODO
Evaluation eval = new Evaluation();
eval.evalTimeSeries(labels, out, maskArray);
return eval.f1();
}
@Override
public int numLabels() {
// FIXME: int cast
return (int) labels.size(1);
}
@Override
public void fit(DataSetIterator iter) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public int[] predict(INDArray examples) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public List predict(DataSet dataSet) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public void fit(INDArray examples, INDArray labels) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public void fit(DataSet data) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public void fit(INDArray examples, int[] labels) {
throw new UnsupportedOperationException("Not supported");
}
@Override
public Type type() {
return Type.CONVOLUTIONAL;
}
@Override
public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) {
assertInputSet(false);
if (input.rank() != 4)
throw new UnsupportedOperationException(
"Input must be rank 4. Got input with rank " + input.rank() + " " + layerId());
INDArray in = workspaceMgr.dup(ArrayType.ACTIVATIONS, input, input.ordering());
INDArray input2d = ConvolutionUtils.reshape4dTo2d(in, workspaceMgr, ArrayType.ACTIVATIONS);
INDArray out2d = layerConf().getActivationFn().getActivation(input2d, training);
// FIXME: int cast
return ConvolutionUtils.reshape2dTo4d(out2d, ArrayUtil.toInts(input.shape()), workspaceMgr, ArrayType.ACTIVATIONS);
}
@Override
public void setMaskArray(INDArray maskArray) {
this.maskArray = maskArray;
}
@Override
public boolean isPretrainLayer() {
return false;
}
@Override
public Pair feedForwardMaskArray(INDArray maskArray, MaskState currentMaskState,
int minibatchSize) {
this.maskArray = maskArray;
return null; //Last layer in network
}
@Override
public boolean needsLabels() {
return true;
}
@Override
public double computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr) {
INDArray input2d = ConvolutionUtils.reshape4dTo2d(input, workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray labels2d = ConvolutionUtils.reshape4dTo2d(labels, workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray maskReshaped = ConvolutionUtils.reshapeMaskIfRequired(maskArray, input, workspaceMgr, ArrayType.FF_WORKING_MEM);
ILossFunction lossFunction = layerConf().getLossFn();
double score = lossFunction.computeScore(labels2d, input2d.dup(), layerConf().getActivationFn(), maskReshaped, false);
score /= getInputMiniBatchSize();
score += fullNetRegTerm;
this.score = score;
return score;
}
/**
* Compute the score for each example individually, after labels and input have been set.
*
* @param fullNetRegTerm Regularization score term for the entire network (or, 0.0 to not include regularization)
* @return A column INDArray of shape [numExamples,1], where entry i is the score of the ith example
*/
@Override
public INDArray computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr) {
//For CNN: need to sum up the score over each x/y location before returning
if (input == null || labels == null)
throw new IllegalStateException("Cannot calculate score without input and labels " + layerId());
INDArray input2d = ConvolutionUtils.reshape4dTo2d(input, workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray labels2d = ConvolutionUtils.reshape4dTo2d(labels, workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray maskReshaped = ConvolutionUtils.reshapeMaskIfRequired(maskArray, input, workspaceMgr, ArrayType.FF_WORKING_MEM);
ILossFunction lossFunction = layerConf().getLossFn();
INDArray scoreArray =
lossFunction.computeScoreArray(labels2d, input2d, layerConf().getActivationFn(), maskReshaped);
//scoreArray: shape [minibatch*h*w, 1]
//Reshape it to [minibatch, 1, h, w] then sum over x/y to give [minibatch, 1]
val newShape = input.shape().clone();
newShape[1] = 1;
// FIXME
INDArray scoreArrayTs = ConvolutionUtils.reshape2dTo4d(scoreArray, ArrayUtil.toInts(newShape), workspaceMgr, ArrayType.FF_WORKING_MEM);
INDArray summedScores = scoreArrayTs.sum(1,2,3).reshape(scoreArrayTs.size(0), 1);
if (fullNetRegTerm != 0.0) {
summedScores.addi(fullNetRegTerm);
}
return workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, summedScores);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy