All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.nn.layers.convolution.CnnLossLayer Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.deeplearning4j.nn.layers.convolution;

import lombok.Getter;
import lombok.Setter;
import lombok.val;
import org.deeplearning4j.eval.Evaluation;
import org.deeplearning4j.nn.api.MaskState;
import org.deeplearning4j.nn.api.layers.IOutputLayer;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.gradient.DefaultGradient;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.layers.BaseLayer;
import org.deeplearning4j.util.ConvolutionUtils;
import org.nd4j.base.Preconditions;
import org.nd4j.linalg.api.buffer.DataType;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.api.DataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.lossfunctions.ILossFunction;
import org.nd4j.linalg.primitives.Pair;
import org.deeplearning4j.nn.workspace.LayerWorkspaceMgr;
import org.deeplearning4j.nn.workspace.ArrayType;
import org.nd4j.linalg.util.ArrayUtil;

import java.util.Arrays;
import java.util.List;

/**
 * Convolutional Neural Network Loss Layer.
* Handles calculation of gradients etc for various objective functions.
* NOTE: CnnLossLayer does not have any parameters. Consequently, the output activations size is equal to the input size.
* Input and output activations are same as other CNN layers: 4 dimensions with shape [miniBatchSize,channels,height,width]
* CnnLossLayer has support for a built-in activation function (tanh, softmax etc) - if this is not required, set * activation function to Activation.IDENTITY. For activations such as softmax, note that this is applied channels-wise: * that is, softmax is applied along dimension 1 (channels) for each minibatch, and x/y location separately.
*
* Note that 3 types of masking are supported: (n=minibatchSize, c=channels, h=height, w=width)
* - Per example masking: Where an example is present or not (and all outputs are masked by it). Mask shape [n,1]
* - Per x/y location masking: where each spatial X/Y location is present or not (all channels at a given x/y are masked by it). * Mask shape: [n,h,w].
* - Per output masking: Where each output activation value is present or not - mask shape [n,c,h,w] (same as output)
* * @author Alex Black */ public class CnnLossLayer extends BaseLayer implements IOutputLayer { @Setter @Getter protected INDArray labels; public CnnLossLayer(NeuralNetConfiguration conf, DataType dataType) { super(conf, dataType); } @Override public Pair backpropGradient(INDArray epsilon, LayerWorkspaceMgr workspaceMgr) { assertInputSet(true); if (input.rank() != 4) throw new UnsupportedOperationException( "Input is not rank 4. Got input with rank " + input.rank() + " " + layerId() + " with shape " + Arrays.toString(input.shape()) + " - expected shape [minibatch,channels,height,width]"); if (labels == null) throw new IllegalStateException("Labels are not set (null)"); Preconditions.checkState(input.equalShapes(labels), "Input and label arrays do not have same shape: %ndShape vs. %ndShape",input, labels); INDArray input2d = ConvolutionUtils.reshape4dTo2d(input, workspaceMgr, ArrayType.FF_WORKING_MEM); INDArray labels2d = ConvolutionUtils.reshape4dTo2d(labels, workspaceMgr, ArrayType.FF_WORKING_MEM); INDArray maskReshaped = ConvolutionUtils.reshapeMaskIfRequired(maskArray, input, workspaceMgr, ArrayType.FF_WORKING_MEM); // delta calculation ILossFunction lossFunction = layerConf().getLossFn(); INDArray delta2d = lossFunction.computeGradient(labels2d, input2d.dup(input2d.ordering()), layerConf().getActivationFn(), maskReshaped); delta2d = workspaceMgr.leverageTo(ArrayType.ACTIVATION_GRAD, delta2d); // FIXME: int cast INDArray delta4d = ConvolutionUtils.reshape2dTo4d(delta2d, ArrayUtil.toInts(input.shape()), workspaceMgr, ArrayType.ACTIVATION_GRAD); // grab the empty gradient Gradient gradient = new DefaultGradient(); return new Pair<>(gradient, delta4d); } @Override public double calcRegularizationScore(boolean backpropParamsOnly){ return 0; } @Override public double f1Score(DataSet data) { return 0; } /** * {@inheritDoc} */ @Override public double f1Score(INDArray examples, INDArray labels) { INDArray out = activate(examples, false, null); //TODO Evaluation eval = new Evaluation(); eval.evalTimeSeries(labels, out, maskArray); return eval.f1(); } @Override public int numLabels() { // FIXME: int cast return (int) labels.size(1); } @Override public void fit(DataSetIterator iter) { throw new UnsupportedOperationException("Not supported"); } @Override public int[] predict(INDArray examples) { throw new UnsupportedOperationException("Not supported"); } @Override public List predict(DataSet dataSet) { throw new UnsupportedOperationException("Not supported"); } @Override public void fit(INDArray examples, INDArray labels) { throw new UnsupportedOperationException("Not supported"); } @Override public void fit(DataSet data) { throw new UnsupportedOperationException("Not supported"); } @Override public void fit(INDArray examples, int[] labels) { throw new UnsupportedOperationException("Not supported"); } @Override public Type type() { return Type.CONVOLUTIONAL; } @Override public INDArray activate(boolean training, LayerWorkspaceMgr workspaceMgr) { assertInputSet(false); if (input.rank() != 4) throw new UnsupportedOperationException( "Input must be rank 4. Got input with rank " + input.rank() + " " + layerId()); INDArray in = workspaceMgr.dup(ArrayType.ACTIVATIONS, input, input.ordering()); INDArray input2d = ConvolutionUtils.reshape4dTo2d(in, workspaceMgr, ArrayType.ACTIVATIONS); INDArray out2d = layerConf().getActivationFn().getActivation(input2d, training); // FIXME: int cast return ConvolutionUtils.reshape2dTo4d(out2d, ArrayUtil.toInts(input.shape()), workspaceMgr, ArrayType.ACTIVATIONS); } @Override public void setMaskArray(INDArray maskArray) { this.maskArray = maskArray; } @Override public boolean isPretrainLayer() { return false; } @Override public Pair feedForwardMaskArray(INDArray maskArray, MaskState currentMaskState, int minibatchSize) { this.maskArray = maskArray; return null; //Last layer in network } @Override public boolean needsLabels() { return true; } @Override public double computeScore(double fullNetRegTerm, boolean training, LayerWorkspaceMgr workspaceMgr) { INDArray input2d = ConvolutionUtils.reshape4dTo2d(input, workspaceMgr, ArrayType.FF_WORKING_MEM); INDArray labels2d = ConvolutionUtils.reshape4dTo2d(labels, workspaceMgr, ArrayType.FF_WORKING_MEM); INDArray maskReshaped = ConvolutionUtils.reshapeMaskIfRequired(maskArray, input, workspaceMgr, ArrayType.FF_WORKING_MEM); ILossFunction lossFunction = layerConf().getLossFn(); double score = lossFunction.computeScore(labels2d, input2d.dup(), layerConf().getActivationFn(), maskReshaped, false); score /= getInputMiniBatchSize(); score += fullNetRegTerm; this.score = score; return score; } /** * Compute the score for each example individually, after labels and input have been set. * * @param fullNetRegTerm Regularization score term for the entire network (or, 0.0 to not include regularization) * @return A column INDArray of shape [numExamples,1], where entry i is the score of the ith example */ @Override public INDArray computeScoreForExamples(double fullNetRegTerm, LayerWorkspaceMgr workspaceMgr) { //For CNN: need to sum up the score over each x/y location before returning if (input == null || labels == null) throw new IllegalStateException("Cannot calculate score without input and labels " + layerId()); INDArray input2d = ConvolutionUtils.reshape4dTo2d(input, workspaceMgr, ArrayType.FF_WORKING_MEM); INDArray labels2d = ConvolutionUtils.reshape4dTo2d(labels, workspaceMgr, ArrayType.FF_WORKING_MEM); INDArray maskReshaped = ConvolutionUtils.reshapeMaskIfRequired(maskArray, input, workspaceMgr, ArrayType.FF_WORKING_MEM); ILossFunction lossFunction = layerConf().getLossFn(); INDArray scoreArray = lossFunction.computeScoreArray(labels2d, input2d, layerConf().getActivationFn(), maskReshaped); //scoreArray: shape [minibatch*h*w, 1] //Reshape it to [minibatch, 1, h, w] then sum over x/y to give [minibatch, 1] val newShape = input.shape().clone(); newShape[1] = 1; // FIXME INDArray scoreArrayTs = ConvolutionUtils.reshape2dTo4d(scoreArray, ArrayUtil.toInts(newShape), workspaceMgr, ArrayType.FF_WORKING_MEM); INDArray summedScores = scoreArrayTs.sum(1,2,3).reshape(scoreArrayTs.size(0), 1); if (fullNetRegTerm != 0.0) { summedScores.addi(fullNetRegTerm); } return workspaceMgr.leverageTo(ArrayType.ACTIVATIONS, summedScores); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy