
org.deeplearning4j.parallelism.inference.InferenceObservable Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.parallelism.inference;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.common.primitives.Pair;
import java.util.List;
import java.util.Observer;
public interface InferenceObservable {
/**
* Get input batches - and their associated input mask arrays, if any
* Note that usually the returned list will be of size 1 - however, in the batched case, not all inputs
* can actually be batched (variable size inputs to fully convolutional net, for example). In these "can't batch"
* cases, multiple input batches will be returned, to be processed
*
* @return List of pairs of input arrays and input mask arrays. Input mask arrays may be null.
*/
List> getInputBatches();
void addInput(INDArray... input);
void addInput(INDArray[] input, INDArray[] inputMasks);
void setOutputBatches(List output);
void setOutputException(Exception e);
void addObserver(Observer observer);
INDArray[] getOutput();
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy